Electricity consumption in Finland influenced by climate effects of energetic particle precipitation
Juntunen, Veera; Asikainen, Timo (2023-11-23)
Juntunen, Veera
Asikainen, Timo
Springer
23.11.2023
Juntunen, V., Asikainen, T. Electricity consumption in Finland influenced by climate effects of energetic particle precipitation. Sci Rep 13, 20546 (2023). https://doi.org/10.1038/s41598-023-47605-8
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202311273376
https://urn.fi/URN:NBN:fi:oulu-202311273376
Tiivistelmä
Abstract
It is known that electricity consumption in many cold Northern countries depends greatly on prevailing outdoor temperatures especially during the winter season. On the other hand, recent research has demonstrated that solar wind driven energetic particle precipitation from space into the polar atmosphere can influence the stratospheric polar vortex and tropospheric weather patterns during winter. These changes are significant, e.g., in Northern Europe, especially in Finland. In this study we demonstrate that geomagnetic activity, as a proxy of energetic particle precipitation, significantly influences Finland’s average temperature and total wintertime electricity consumption in Finland. This influence is only seen when the prevailing equatorial stratospheric winds, so called QBO winds, are easterly. The results demonstrate a previously unrecognized societal influence of space weather, and imply that long-term energy consumption forecasts could potentially be improved by considering long-term space weather predictions.
It is known that electricity consumption in many cold Northern countries depends greatly on prevailing outdoor temperatures especially during the winter season. On the other hand, recent research has demonstrated that solar wind driven energetic particle precipitation from space into the polar atmosphere can influence the stratospheric polar vortex and tropospheric weather patterns during winter. These changes are significant, e.g., in Northern Europe, especially in Finland. In this study we demonstrate that geomagnetic activity, as a proxy of energetic particle precipitation, significantly influences Finland’s average temperature and total wintertime electricity consumption in Finland. This influence is only seen when the prevailing equatorial stratospheric winds, so called QBO winds, are easterly. The results demonstrate a previously unrecognized societal influence of space weather, and imply that long-term energy consumption forecasts could potentially be improved by considering long-term space weather predictions.
Kokoelmat
- Avoin saatavuus [37798]