Extreme Solar Events: Setting up a Paradigm
Usoskin, Ilya; Miyake, Fusa; Baroni, Melanie; Brehm, Nicolas; Dalla, Silvia; Hayakawa, Hisashi; Hudson, Hugh; Jull, A. J. Timothy; Knipp, Delores; Koldobskiy, Sergey; Maehara, Hiroyuki; Mekhaldi, Florian; Notsu, Yuta; Poluianov, Stepan; Rozanov, Eugene; Shapiro, Alexander; Spiegl, Tobias; Sukhodolov, Timofei; Uusitalo, Joonas; Wacker, Lukas (2023-11-03)
Usoskin, Ilya
Miyake, Fusa
Baroni, Melanie
Brehm, Nicolas
Dalla, Silvia
Hayakawa, Hisashi
Hudson, Hugh
Jull, A. J. Timothy
Knipp, Delores
Koldobskiy, Sergey
Maehara, Hiroyuki
Mekhaldi, Florian
Notsu, Yuta
Poluianov, Stepan
Rozanov, Eugene
Shapiro, Alexander
Spiegl, Tobias
Sukhodolov, Timofei
Uusitalo, Joonas
Wacker, Lukas
Springer
03.11.2023
Usoskin, I., Miyake, F., Baroni, M. et al. Extreme Solar Events: Setting up a Paradigm. Space Sci Rev 219, 73 (2023). https://doi.org/10.1007/s11214-023-01018-1.
https://creativecommons.org/licenses/by/4.0/
© 2023, The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
© 2023, The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
https://creativecommons.org/licenses/by/4.0/
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202311273353
https://urn.fi/URN:NBN:fi:oulu-202311273353
Tiivistelmä
Abstract
The Sun is magnetically active and often produces eruptive events on different energetic and temporal scales. Until recently, the upper limit of such events was unknown and believed to be roughly represented by direct instrumental observations. However, two types of extreme events were discovered recently: extreme solar energetic particle events on the multi-millennial time scale and super-flares on sun-like stars. Both discoveries imply that the Sun might rarely produce events, called extreme solar events (ESE), whose energy could be orders of magnitude greater than anything we have observed during recent decades. During the years following these discoveries, great progress has been achieved in collecting observational evidence, uncovering new events, making statistical analyses, and developing theoretical modelling. The ESE paradigm lives and is being developed. On the other hand, many outstanding questions still remain open and new ones emerge. Here we present an overview of the current state of the art and the forming paradigm of ESE from different points of view: solar physics, stellar–solar projections, cosmogenic-isotope data, modelling, historical data, as well as terrestrial, technological and societal effects of ESEs. Special focus is paid to open questions and further developments. This review is based on the joint work of the International Space Science Institute (ISSI) team #510 (2020–2022).
The Sun is magnetically active and often produces eruptive events on different energetic and temporal scales. Until recently, the upper limit of such events was unknown and believed to be roughly represented by direct instrumental observations. However, two types of extreme events were discovered recently: extreme solar energetic particle events on the multi-millennial time scale and super-flares on sun-like stars. Both discoveries imply that the Sun might rarely produce events, called extreme solar events (ESE), whose energy could be orders of magnitude greater than anything we have observed during recent decades. During the years following these discoveries, great progress has been achieved in collecting observational evidence, uncovering new events, making statistical analyses, and developing theoretical modelling. The ESE paradigm lives and is being developed. On the other hand, many outstanding questions still remain open and new ones emerge. Here we present an overview of the current state of the art and the forming paradigm of ESE from different points of view: solar physics, stellar–solar projections, cosmogenic-isotope data, modelling, historical data, as well as terrestrial, technological and societal effects of ESEs. Special focus is paid to open questions and further developments. This review is based on the joint work of the International Space Science Institute (ISSI) team #510 (2020–2022).
Kokoelmat
- Avoin saatavuus [38840]