D-Band downconversion mixer design in CMOS-SOI
Kaikkonen, Mikko (2023-09-15)
Kaikkonen, Mikko
M. Kaikkonen
15.09.2023
© 2023 Mikko Kaikkonen. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-202309203073
https://urn.fi/URN:NBN:fi:oulu-202309203073
Tiivistelmä
The current surge in research interest around the sub-THz frequency region comes as a no surprise. The potential for greater data rates and available bandwidths are just a couple reasons why research around these frequencies should be prioritized. Many viable receiver structures have been presented for these frequency regions, but they all have one thing in common: They all include a downconversion mixer. The mixer is a crucial piece in the receiver structure, converting the higher frequency radio frequency (RF) signal to a much lower intermediate frequency (IF) signal using multiplication with a local oscillator (LO) signal. The resulting waveform is much easier to handle for signal processing that comes after. The downconversion should be able to provide a fair amount of gain to the converted signal on a wide range of input signals, measured with the 1dB compression point. The noise figure is also a major consideration for RF-devices, but in the case of the mixer, its importance is not as prevalent as it is for the LNA that precedes it, since the noise of the mixer is attenuated by the gain of the previous stages.
This master’s thesis work introduces the basic theory around downconversion mixers, followed by the design of a mixer from schematic level circuit design all the way to the physical layout. The physical design is done using 22nm FDSOI technology, provided by GlobalFoundries. The design is made for a direct conversion receiver using Gilbert cell topology, meaning image rejection is reasonable and depends only on the received signal itself, and good noise and feedthrough performance should be expected in simulations. The mixer is to downconvert a 151 GHz signal down to 0–1 GHz, using an LO signal between 150–151 GHz. Two iterations of the mixer are shown in the end results, the first one being based on the schematic design, and the second one with adjustments made for better performance. While driving a high impedance 500 Ohm load, the second iteration was able to reach a conversion gain of -10.0 dB with a 1dB compression point of 6.4 dBm while dissipating 4.7 mW of power. DSB noise figure was simulated to be 17.3 dB and the LO leakage to the IF output at -27.7 dBm. Nykyinen tutkimuksen keskittyminen millimetriaalto ja THz taajuusalueille ei tule kenellekään yllätyksenä. Suurempien datanopeuksien ja vapaiden taajuuskaistojen potentiaali ovat vain joitain monista hyvistä käytännön syistä, miksi tutkimusta näiden taajuuksien ympärillä priorisoidaan. Monia käytännöllisiä vastaanotinrakenteita on esitetty näille taajuusalueille ja niillä on kaikilla yksi yhteinen tekijä: tajuusmuunnin alemmille taajuuksille. Taajuusmuunnin eli sekoitin on olennainen osa vastaanotinrakenteita, muuntaen korkeamman radiotaajuuden (RF) matalammalle välitaajuudelle (IF) käyttäen taajuuksien sekoittamista paikallisoskillaattorilla (LO). Mikserin ulostulosignaali on signaalinprosessoinnin näkökulmasta paljon käytännöllisempi. Alaspäin taajuusmuuntavan mikserin tulee pystyä vahvistamaan laajaa skaalaa erivahvuisia signaaleja, minkä ylärajaa mittaamme 1 dB kompressiopisteellä. Radiolaitteistossa kohinaluku tulee yleensä myös ottaa huomioon, mutta johtuen mikserin sijainnista vastaanotinketjussa, kohinaluku vaimenee suhteessa sitä edeltävien vahvistuksien verran, eikä siksi ole niin kriittinen.
Tämä diplomityö esittelee lukijalle ensiksi alaspäin muuntavan taajuussekoittimen perusteorian, toisena sen teoreettisen piirikaavion suunnittelun sekä sen simuloinnin tuloksia, ja viimeisenä fyysisen layoutin suunnittelun sekä sen simuloinnin tulokset. Fyysisen layoutin suunnittelu ja simulointi tehdään käyttäen GlobalFoundries 22nm FDSOI teknologiaa. Suunnittelu tehdään suoramuunnosvastaanottimelle käyttäen Gilbertin solu topologiaa, eliminoiden peilitaajuuksista aiheutuvat ongelmat, sekä vähentäen kohinan sekä ei-haluttujen signaalien läpivuotojen vaikutusta. Sekoittimen tulee muuntaa 151 GHz signaali n. 0–1 GHz kantataajuudelle käyttäen LO-signaalia taajuusvälillä 150–151 GHz. Lopullisissa tuloksissa vertaillaan kahta eri iteraatiota. Ensimmäisenä versiota, joka luotiin alun perin teoriapohjaisen piirisuunnittelun pohjalta, sekä toista versiota, missä useilla parannuksilla mikserin suorituskykyä saatiin parannettua. Korkeaimpedanssista 500 Ohmin kuormaa ajaessa mikseri ylsi -10.0 dB vahvistukseen, 1 dB kompressiopiste oli 6.4 dB kuluttaen 4.7 mW virtaa käytössä. Kohinaluvuksi simuloitiin 17.3 dB, sekä LO signaalin vuodosta IF lähtöön oli -27.7 dBm.
This master’s thesis work introduces the basic theory around downconversion mixers, followed by the design of a mixer from schematic level circuit design all the way to the physical layout. The physical design is done using 22nm FDSOI technology, provided by GlobalFoundries. The design is made for a direct conversion receiver using Gilbert cell topology, meaning image rejection is reasonable and depends only on the received signal itself, and good noise and feedthrough performance should be expected in simulations. The mixer is to downconvert a 151 GHz signal down to 0–1 GHz, using an LO signal between 150–151 GHz. Two iterations of the mixer are shown in the end results, the first one being based on the schematic design, and the second one with adjustments made for better performance. While driving a high impedance 500 Ohm load, the second iteration was able to reach a conversion gain of -10.0 dB with a 1dB compression point of 6.4 dBm while dissipating 4.7 mW of power. DSB noise figure was simulated to be 17.3 dB and the LO leakage to the IF output at -27.7 dBm.
Tämä diplomityö esittelee lukijalle ensiksi alaspäin muuntavan taajuussekoittimen perusteorian, toisena sen teoreettisen piirikaavion suunnittelun sekä sen simuloinnin tuloksia, ja viimeisenä fyysisen layoutin suunnittelun sekä sen simuloinnin tulokset. Fyysisen layoutin suunnittelu ja simulointi tehdään käyttäen GlobalFoundries 22nm FDSOI teknologiaa. Suunnittelu tehdään suoramuunnosvastaanottimelle käyttäen Gilbertin solu topologiaa, eliminoiden peilitaajuuksista aiheutuvat ongelmat, sekä vähentäen kohinan sekä ei-haluttujen signaalien läpivuotojen vaikutusta. Sekoittimen tulee muuntaa 151 GHz signaali n. 0–1 GHz kantataajuudelle käyttäen LO-signaalia taajuusvälillä 150–151 GHz. Lopullisissa tuloksissa vertaillaan kahta eri iteraatiota. Ensimmäisenä versiota, joka luotiin alun perin teoriapohjaisen piirisuunnittelun pohjalta, sekä toista versiota, missä useilla parannuksilla mikserin suorituskykyä saatiin parannettua. Korkeaimpedanssista 500 Ohmin kuormaa ajaessa mikseri ylsi -10.0 dB vahvistukseen, 1 dB kompressiopiste oli 6.4 dB kuluttaen 4.7 mW virtaa käytössä. Kohinaluvuksi simuloitiin 17.3 dB, sekä LO signaalin vuodosta IF lähtöön oli -27.7 dBm.
Kokoelmat
- Avoin saatavuus [36660]