Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pirie-Kieren-teoria : matemaattisen ymmärryksen kasvun karakterisointi ja esitys

Kaketti, Maarit (2015-06-01)

 
Avaa tiedosto
nbnfioulu-201506031768.pdf (999.0Kt)
nbnfioulu-201506031768_pdfa_report.xml (186.1Kt)
nbnfioulu-201506031768_mods.xml (13.58Kt)
nbnfioulu-201506031768_solr.xml (30.78Kt)
Lataukset: 


Kaketti, Maarit
M. Kaketti
01.06.2015
© 2015 Maarit Kaketti. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-201506031768
Tiivistelmä
Pirie ja Kieren näkevät teoriassaan matemaattisen ymmärryksen kasvun yksilöllisenä, dynaamisena ja koskaan päättymättömänä prosessina. Ymmärrys eri matemaattisesta aihepiiristä tai käsitteestä kasvaa siinä edestakaisten liikkeiden myötä erilaisten matemaattisten ymmärrysmuotojen välillä. Eri ymmärrysmuodot muodostavat teorian sisäkkäisten tasojen mallin, jolla tätä liikettä voidaan havainnollistaa. Tasot eli eri ymmärrysmuodot ovat alkeellinen tietäminen, kuvan luominen, ominaisuuksien huomaaminen, muodollistaminen, havainnoiminen, koostaminen ja innovoiminen. Alkeellisella tietämisellä viitataan henkilön lähtökohtaiseen tietoon matemaattiseen aihepiiriin siirryttäessä ja siten mallia voidaan soveltaa vaativissakin aihepiireissä ja käsitteissä. Sanalla kuva viitataan visuaalisten kuvien lisäksi myös mielen tasolla tapahtuvaan hahmottamiseen käsiteltävästä matemaattisesta aiheesta ja ideoihin siitä. Havainnoimisella viitataan käsitteiden näkemiseen kokonaisena teoriana ja koostamisella teorian vahvistamiseen matemaattisesti hyväksyttävällä tavalla.

Teorian ominaisuudella takaisin paluu Pirie ja Kieren tähdentävät, että kohdatessaan ongelman tai puutteen ymmärryksessään, henkilön täytyy palata mallin sisemmälle tasolle työstämään muodostuvaa käsitettään esimerkiksi täydentämällä jo olemassa olevaa kuvaa siitä. Tällä tavalla henkilö voi muodostaa myös syvällisemmän ymmärryksen käsiteltävänä olevasta aiheesta. Opettaja voi toiminnallaan tukea matemaattisen tiedon kehittymistä, pyrkimällä tarvittaessa palauttamaan oppilaan alemmille ymmärryksen tasolle, vahvistamaan oppilaan olemassa oleva tietämys oikeaksi tai kannustamalla tätä siirtymään ylemmille ymmärryksen tasoille. Pari- ja ryhmätyö voi tukea myös yksilöllistä matemaattisen tiedon kasvua hyvällä tavalla, kun keskinäisen vuorovaikutuksen kautta oppijalle herää uusia näkökulmia ja tehtyjä huomioita voi ilmaista tovereille. Pirie-Kieren-teoriassa oppilaan ilmaisun nähdään tukevan tehtäviä toimintoja merkittävällä tavalla. Teoriassa huomioidaan myös, miten oppilaiden on tärkeää kehittyä aikaisemman tiedon kokoamisessa uutta käsitettä tai tehtävää tarkastellessa. Tässä tapauksessa kysymys ei ole takaisin paluusta mallin alemmille tasoille, vaan oppilaan tarvitseman aikaisemman tiedon etsimisestä, löytämisestä ja käyttämisestä tarvittavalla tavalla uuden käsitteen parissa.

Tekemäni tutkielman perusteella, P-K-teorian mukainen opetus tukee oppijan oikeanlaista tiedon rakentamista matemaattisista aihepiireistä ja kannustaa oppijaa etenemään siinä.
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen