Permutaatioryhmien soveltaminen GAP-ohjelmiston avulla
Veikanmaa, Teemu (2013-01-14)
Veikanmaa, Teemu
T. Veikanmaa
14.01.2013
© 2013 Teemu Veikanmaa. Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi:oulu-201303141099
https://urn.fi/URN:NBN:fi:oulu-201303141099
Tiivistelmä
Permutaatioryhmät ovat tärkeä osa matemaattista ryhmäteoriaa. Niiden tärkeyden perustelee muun muassa Cayleyn lause, joka kertoo jokaiselle ryhmälle löytyvän jonkun sen kanssa rakenteeltaan yhtäläisen permutaatioryhmän. Täten siis kaikkia permutaatioryhmien ominaisuuksia voidaan soveltaa yleisesti kaikkiin ryhmiin.
GAP-ohjelmisto (Groups, Algorithms and Programming) on monipuolinen kokoelma diskreetin matematiikan tarpeisiin soveltuvia ohjelmia. Sen mukana tulee myös kirjastoja jotka sisältävät tietoa erityyppisistä ryhmistä, mm. perustiedot kaikista pienistä ryhmistä. GAP on laajennettavissa sen omalla ohjelmointikielellä tehdyillä ohjelmakirjastoilla.
Tutkielma esittelee GAP-ohjelmiston ja tutkii sen käyttöä permutaatioryhmien soveltamisessa. Tutkielman alussa on teoriaosa, jossa esitellään ryhmäteorian perusteita sekä permutaatioiden ja permutaatioryhmien ominaisuuksia. Teoriaosa kattaa tutkielman esimerkeissä soveltavassa osassa tarvittavat tiedot.
Keskiosa tutkielmasta esittelee GAP-ohjelmiston yleisesti ja erityisesti sen käytön permutaatioryhmien käsittelyssä. Koska ohjelmisto on hyvin laaja, sen kaikkia ominaisuuksia ei ole saatu mahtumaan tämän tutkielman laajuuteen. Ominaisuuksista on pyritty valitsemaan yleisimmin tarvittavat sekä esimerkkisovelluksissa käytettävät.
Tutkielman loppuosa sisältää esimerkkejä permutaatioryhmien käytöstä GAP-ohjelmistolla. Esimerkkisovelluksiksi on valittu korttipakan sekoitukset, kuution tahkojen väritykset, 15-puzzle sekä Rubikin kuutio. Esimerkkisovellukset esitellään ensin yleisesti, jonka jälkeen niiden ominaisuuksia tutkitaan GAP-ohjelmiston avulla.
GAP-ohjelmisto (Groups, Algorithms and Programming) on monipuolinen kokoelma diskreetin matematiikan tarpeisiin soveltuvia ohjelmia. Sen mukana tulee myös kirjastoja jotka sisältävät tietoa erityyppisistä ryhmistä, mm. perustiedot kaikista pienistä ryhmistä. GAP on laajennettavissa sen omalla ohjelmointikielellä tehdyillä ohjelmakirjastoilla.
Tutkielma esittelee GAP-ohjelmiston ja tutkii sen käyttöä permutaatioryhmien soveltamisessa. Tutkielman alussa on teoriaosa, jossa esitellään ryhmäteorian perusteita sekä permutaatioiden ja permutaatioryhmien ominaisuuksia. Teoriaosa kattaa tutkielman esimerkeissä soveltavassa osassa tarvittavat tiedot.
Keskiosa tutkielmasta esittelee GAP-ohjelmiston yleisesti ja erityisesti sen käytön permutaatioryhmien käsittelyssä. Koska ohjelmisto on hyvin laaja, sen kaikkia ominaisuuksia ei ole saatu mahtumaan tämän tutkielman laajuuteen. Ominaisuuksista on pyritty valitsemaan yleisimmin tarvittavat sekä esimerkkisovelluksissa käytettävät.
Tutkielman loppuosa sisältää esimerkkejä permutaatioryhmien käytöstä GAP-ohjelmistolla. Esimerkkisovelluksiksi on valittu korttipakan sekoitukset, kuution tahkojen väritykset, 15-puzzle sekä Rubikin kuutio. Esimerkkisovellukset esitellään ensin yleisesti, jonka jälkeen niiden ominaisuuksia tutkitaan GAP-ohjelmiston avulla.
Kokoelmat
- Avoin saatavuus [29929]