Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Behaviour of the boundary potentials and boundary integral solution of the time fractional diffusion equation

Kemppainen, Jukka (2010-03-31)

 
Avaa tiedosto
isbn978-951-42-6132-9.pdf (654.8Kt)
isbn978-951-42-6132-9_meta.xml (34.08Kt)
isbn978-951-42-6132-9_solr.xml (27.37Kt)
Lataukset: 


Kemppainen, Jukka
University of Oulu
31.03.2010
Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:9789514261329

Kuvaus

Academic dissertation to be presented with the assent of the Faculty of Science of the University of Oulu for public defence in OP-sali (Auditorium L10), Linnanmaa, on 10 April 2010, at 12 noon
Tiivistelmä

Abstract

The dissertation considers the time fractional diffusion equation (TFDE) with the Dirichlet boundary condition in the sub-diffusion case, i.e. the order of the time derivative is α ∈ (0,1). In the thesis we have studied the solvability of TFDE by the method of layer potentials. We have shown that both the single layer potential and the double layer potential approaches lead to integral equations which are uniquely solvable.

The dissertation consists of four articles and a summary section. The first article presents the solution for the time fractional diffusion equation in terms of the single layer potential. In the second and third article we have studied the boundary behaviour of the layer potentials for TFDE. The fourth paper considers the spline collocation method to solve the boundary integral equation related to TFDE.

In the summary part we have proved that TFDE has a unique solution and the solution is given by the double layer potential when the lateral boundary of a bounded domain admits C1 regularity. Also, we have proved that the solution depends continuously on the datum in the sense that a nontangential maximal function of the solution is norm bounded from above by the datum in L2(ΣT). If the datum belongs to the space H1,α/2(ΣT), we have proved that the nontangential function of the gradient of the solution is norm bounded from above by the datum in H1,α/2(ΣT).

Kokoelmat
  • Avoin saatavuus [37837]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen