Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Issues of algebra and optimality in Iterative Learning Control

Hätönen, Jari (2004-06-11)

 
Avaa tiedosto
isbn951-42-7351-6.pdf (1.568Mt)
isbn951-42-7351-6_meta.xml (34.64Kt)
isbn951-42-7351-6_solr.xml (32.43Kt)
Lataukset: 


Hätönen, Jari
University of Oulu
11.06.2004
Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:9514273516

Kuvaus

Academic Dissertation to be presented with the assent of the Faculty of Technology, University of Oulu, for public discussion in Raahensali (Auditorium L10), Linnanmaa, on June 11th, 2004, at 12 noon.
Tiivistelmä

Abstract

In this thesis a set of new algorithms is introduced for Iterative Learning Control (ILC) and Repetitive Control (RC). Both areas of study are relatively new in control theory, and the common denominator for them is that they concentrate on controlling systems that include either reference signals or disturbances which are periodic. This provides opportunities for using past information or experience so that the control system learns the control action that results in good performance in terms of reference tracking or disturbance rejection.

The first major contribution of the thesis is the algebraic analysis of ILC systems. This analysis shows that in the discrete-time case ILC algorithm design can be considered as designing a multivariable controller for a multivariable static plant and the reference signal that has to be tracked is a multivariable step function. Furthermore, the algebraic analysis reveals that time-varying algorithms should be used instead of time-invariant ones in order to guarantee monotonic convergence of the error in norm.

However, from the algebraic analysis it is not clear how to select the free parameters of a given ILC algorithm. Hence in this thesis optimisation methods are used to automate this design phase. Special emphasis is placed on the so called Norm-Optimal Iterative Learning Control (NOILC) that was originally developed in (Amann:1996) as a new result it is shown that a convex modification of the existing predictive algorithm will result in a considerable improvement in convergence speed. Because the NOILC algorithm is computationally quite complex, a new set of Parameter-Optimal ILC algorithms are derived that converge under certain assumptions on the original plant. Three of these new algorithms will result in monotonic convergence to zero tracking error for an arbitrary discrete-time, linear, time-invariant plant. This a very strong property that has been earlier reported for only a small number of ILC algorithms.

In the RC case it is shown that an existing RC algorithm that has been widely analysed and used in the research literature is in fact highly unrobust if the algorithm is implemented using sampled-data processing. Consequently, in this thesis a new optimality based discrete-time RC algorithm is derived, which converges to zero tracking error asymptotically for an arbitrary linear, time-invariant discrete-time plant under mild controllability and observability conditions.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen