Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Laplace NMR methods for biological nanoparticles, ionic liquids and porous materials research

Ullah, Md Sharif (2022-12-15)

 
Avaa tiedosto
isbn978-952-62-3475-5.pdf (1.695Mt)
isbn978-952-62-3475-5_meta.xml (50.75Kt)
isbn978-952-62-3475-5_solr.xml (73.48Kt)
Lataukset: 


Ullah, Md Sharif
University of Oulu
15.12.2022
Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:9789526234755

Kuvaus

Academic dissertation to be presented with the assent of the Doctoral Training committee of Technology and Natural Sciences of the University of Oulu for public discussion in the auditorium IT116, Linnanmaa, on 1 December 2022, at 12 noon
Tiivistelmä

Abstract

The thesis aims to characterize extracellular vesicles (EVs) utilizing nuclear magnetic resonance (NMR) and develop different ultrafast Laplace NMR (UF LNMR) methods. LNMR consists of diffusion and relaxation NMR experiments and provides detailed information about molecular rotational and translational motion. A multidimensional approach substantially enhances the resolution and information content of LNMR. However, multidimensional LNMR experiments are slow because of the need to repeat the experiment with incremented evolution time. The utilization of an ultrafast approach in multidimensional LNMR experiments significantly reduces the experiment time. In the UF LNMR approach, the evolution times are encoded in different layers of a sample. This way, the data of a multidimensional experiment can be read in a single scan, shortening the experiment time by one to three orders of magnitude. The single scan approach allows hyperpolarization techniques to boost the experimental sensitivity by several orders of magnitude.

In the first part of the thesis, we demonstrate that diffusion-ordered spectroscopy (DOSY) is an NMR tool to characterize various EV samples extracted from milk as well as embryonic kidney and renal carcinoma cells based on their size distributions. The DOSY NMR allows one to determine a broad size distribution ranging from 1 to 500 nm. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) confirm the DOSY NMR size distribution. However, the NTA analysis cannot detect any particle below 70 nm. A complementary hyperpolarized chemical exchange saturation transfer (hyper-CEST) 129Xe NMR study confirms the presence of small and large nanoparticles in the EV samples.

In the second part of the thesis, we introduced a novel single scan UF LNMR called UF T2-T2 relaxation exchange spectroscopy (REXSY) method to quantify the molecular exchange using T2 relaxation as a contrast. We studied a halogen-free orthoborate-based ionic liquid (IL) to validate the method. It allowed us to quantify the molecular exchange that occurred between the aggregates and free ions. The results obtained from UF REXSY are in good agreement with conventional reference experiments. The UF REXSY method provides the means of analyzing molecular exchange processes in different fields, such as cellular metabolism and ion transport in electrolytes, with higher sensitivity and efficiency.

In the final part of the thesis, we demonstrated a modified UF T1-T2 correlation experiment suitable for nonlinear sampling of T1 data. The method leads to the optimal sampling of exponential data. The technique uses frequency-swept pulses whose frequency increases nonlinearly with time. As proof-of-principle, we exploited the method in analyzing single- and double-tube doped water systems and porous materials. The nonlinear sampling resulted in enhanced resolution. This approach can also be used in other multidimensional UF LNMR experiments, such as diffusion experiments.

 

Original papers

Original papers are not included in the electronic version of the dissertation.

  1. Ullah, M. S., Zhivonitko, V. V., Samoylenko, A., Zhyvolozhnyi, A., Viitala, S., Kankaanpää, S., Komulainen, S., Schröder, L., Vainio, S. J., & Telkki, V.-V. (2021). Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chemical Science, 12(24), 8311–8319. https://doi.org/10.1039/D1SC01402A

    Self-archived version

  2. Ullah, M. S., Mankinen, O., Zhivonitko, V. V., & Telkki, V.-V. (2022). Ultrafast transverse relaxation exchange NMR spectroscopy. Physical Chemistry Chemical Physics, 24(36), 22109–22114. https://doi.org/10.1039/D2CP02944H

    Self-archived version

  3. Zhivonitko, V. V., Ullah, M. S., & Telkki, V.-V. (2019). Nonlinear sampling in ultrafast Laplace NMR. Journal of Magnetic Resonance, 307, 106571. https://doi.org/10.1016/j.jmr.2019.106571

    Self-archived version

 

Osajulkaisut

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon.

  1. Ullah, M. S., Zhivonitko, V. V., Samoylenko, A., Zhyvolozhnyi, A., Viitala, S., Kankaanpää, S., Komulainen, S., Schröder, L., Vainio, S. J., & Telkki, V.-V. (2021). Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chemical Science, 12(24), 8311–8319. https://doi.org/10.1039/D1SC01402A

    Rinnakkaistallennettu versio

  2. Ullah, M. S., Mankinen, O., Zhivonitko, V. V., & Telkki, V.-V. (2022). Ultrafast transverse relaxation exchange NMR spectroscopy. Physical Chemistry Chemical Physics, 24(36), 22109–22114. https://doi.org/10.1039/D2CP02944H

    Rinnakkaistallennettu versio

  3. Zhivonitko, V. V., Ullah, M. S., & Telkki, V.-V. (2019). Nonlinear sampling in ultrafast Laplace NMR. Journal of Magnetic Resonance, 307, 106571. https://doi.org/10.1016/j.jmr.2019.106571

    Rinnakkaistallennettu versio

 
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen