Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bosonic many-body localization and collective phenomena in arrays of transmon devices

Orell, Tuure (2022-05-06)

 
Avaa tiedosto
isbn978-952-62-3271-3.pdf (3.222Mt)
isbn978-952-62-3271-3_meta.xml (47.91Kt)
isbn978-952-62-3271-3_solr.xml (66.23Kt)
Lataukset: 


Orell, Tuure
University of Oulu
06.05.2022
Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:9789526232713

Kuvaus

Academic Dissertation to be presented with the assent of the Doctoral Training
Committee of Technology and Natural Sciences of the University of Oulu, for
public discussion in Auditorium L5, on May 13th, 2022, at 3 p.m.
Tiivistelmä

Abstract

Superconducting circuits are electric devices in which information can be stored and processed on quantum level. The spectrum of these devices is often anharmonic, which means that their two lowest states can be used as a qubit. Moreover, their parameters are highly versatile and their energies are in-situ tunable, they are resistant to thermal noise, and they can be controlled and measured with high accuracy. These properties make superconducting circuits promising candidates for the basic units of a quantum computer. Currently available technology does not yet allow the construction of these machines, partly due to the errors in the qubits caused by external noise. In the meantime, these circuits could be used for simpler tasks such as quantum simulations, where the behavior of a complicated quantum system is studied experimentally using a simpler system.

In this thesis we study many-body phenomena in arrays of specific superconducting circuits called transmons, which we model as anharmonic oscillators in contrast to the conventional two-level approximation. In the first part of this thesis, the transmons are embedded inside a waveguide. The electromagnetic field allows the transmons to interact with each other over long distances, which results in collective effects such as correlated decay and coherent exchange interaction. Correlated decay can be observed as superradiant and subradiant states, whose properties are well known in two-level systems. The bosonic nature of transmons distinguishes them from real two-level systems by enhancing the superradiance in this setup. We model the system with a specific master equation, from which we recover a non-Hermitian effective Hamiltonian whose eigenvalues describe the radiative properties of the system. Our model is in good agreement with experimental data, showing the inadequacy of the two-level approximation.

In the latter part of this thesis we study how the interplay between many-body interactions and local disorder affects the behavior of transmon arrays. With weak disorder the system obeys the laws of statistical physics, resulting in thermalization of the system. With sufficiently strong disorder the system is instead in the many-body localized phase, characterized by the absence of transport of particles and logarithmic spreading of entanglement. The transition point is probed numerically and the phase diagram for the Bose–Hubbard Hamiltonian is constructed.

 

Original papers

Original papers are not included in the electronic version of the dissertation.

  1. Orell, T., Michailidis, A. A., Serbyn, M., & Silveri, M. (2019). Probing the many-body localization phase transition with superconducting circuits. Physical Review B, 100(13), 134504. https://doi.org/10.1103/PhysRevB.100.134504

    Self-archived version

  2. Zanner, M., Orell, T., Schneider, C. M. F., Albert, R., Oleschko, S., Juan, M. L., Silveri, M., & Kirchmair, G. (2022). Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nature Physics. https://doi.org/10.1038/s41567-022-01527-w

    Self-archived version

  3. Orell, T., Zanner, M., Sharafiev, A., Juan, M. L., Albert, R., Oleschko, S., Kirchmair, G., & Silveri, M. (2021). Collective bosonic effects in an array of transmon devices. Manuscript submitted for publication. https://doi.org/10.48550/arXiv.2112.08134

    Self-archived version

 

Osajulkaisut

Osajulkaisut eivät sisälly väitöskirjan elektroniseen versioon.

  1. Orell, T., Michailidis, A. A., Serbyn, M., & Silveri, M. (2019). Probing the many-body localization phase transition with superconducting circuits. Physical Review B, 100(13), 134504. https://doi.org/10.1103/PhysRevB.100.134504

    Rinnakkaistallennettu versio

  2. Zanner, M., Orell, T., Schneider, C. M. F., Albert, R., Oleschko, S., Juan, M. L., Silveri, M., & Kirchmair, G. (2022). Coherent control of a multi-qubit dark state in waveguide quantum electrodynamics. Nature Physics. https://doi.org/10.1038/s41567-022-01527-w

    Rinnakkaistallennettu versio

  3. Orell, T., Zanner, M., Sharafiev, A., Juan, M. L., Albert, R., Oleschko, S., Kirchmair, G., & Silveri, M. (2021). Collective bosonic effects in an array of transmon devices. Manuscript submitted for publication. https://doi.org/10.48550/arXiv.2112.08134

    Rinnakkaistallennettu versio

 
Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen