Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Utilizing similarity information in industrial applications

Koskimäki, Heli (2009-03-03)

 
Avaa tiedosto
isbn978-951-42-9039-8.pdf (1.123Mt)
isbn978-951-42-9039-8_meta.xml (35.29Kt)
isbn978-951-42-9039-8_solr.xml (26.23Kt)
Lataukset: 


Koskimäki, Heli
University of Oulu
03.03.2009
Tämä Kohde on tekijänoikeuden ja/tai lähioikeuksien suojaama. Voit käyttää Kohdetta käyttöösi sovellettavan tekijänoikeutta ja lähioikeuksia koskevan lainsäädännön sallimilla tavoilla. Muunlaista käyttöä varten tarvitset oikeudenhaltijoiden luvan.
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:ISBN:9789514290398

Kuvaus

Academic dissertation to be presented, with the assent of the Faculty of Technology of the University of Oulu, for public defence in Auditorium TS101, Linnanmaa, on March 13th, 2009, at 12 noon
Tiivistelmä

Abstract

The amount of digital data surrounding us has exploded within the past years. In industry, data are gathered from different production phases with the intent to use the data to improve the overall manufacturing process. However, management and utilization of these huge data sets is not straightforward. Thus, a computer-driven approach called data mining has become an attractive research area. Using data mining methods, new and useful information can be extracted from enormous data sets.

In this thesis, diverse industrial problems are approached using data mining methods based on similarity. Similarity information is shown to give an additional advantage in different phases of manufacturing. Similarity information is utilized with smaller-scale problems, but also in a broader perspective when aiming to improve the whole manufacturing process. Different ways of utilizing similarity are also introduced. Methods are chosen to emphasize the similarity aspect; some of the methods rely entirely on similarity information, while other methods just preserve similarity information as a result.

The actual problems covered in this thesis are from quality control, process monitoring, improvement of manufacturing efficiency and model maintenance. They are real-world problems from two different application areas: spot welding and steel manufacturing. Thus, this thesis clearly shows how the industry can benefit from the presented data mining methods.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen