Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Densely-accumulated convolutional network for accurate LPI radar waveform recognition

Huynh-The, Thien; Pham, Quoc-Viet; Nguyen, Toan-Van; Doan, Van-Sang; Nguyen, Nhan Thanh; Benevides da Costa, Daniel; Kim, Dong-Seong (2022-02-02)

 
Avaa tiedosto
nbnfi-fe202201031020.pdf (836.4Kt)
nbnfi-fe202201031020_meta.xml (42.35Kt)
nbnfi-fe202201031020_solr.xml (38.63Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM46510.2021.9685642

Huynh-The, Thien
Pham, Quoc-Viet
Nguyen, Toan-Van
Doan, Van-Sang
Nguyen, Nhan Thanh
Benevides da Costa, Daniel
Kim, Dong-Seong
Institute of Electrical and Electronics Engineers
02.02.2022

T. Huynh-The et al., "Densely-Accumulated Convolutional Network for Accurate LPI Radar Waveform Recognition," 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.2021.9685642.

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOBECOM46510.2021.9685642
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202201031020
Tiivistelmä

Abstract

This paper presents a deep learning-based method to automatically recognize low probability of intercept (LPI) radar waveforms against diversified jamming attacks. Concretely, an efficient convolutional neural network (CNN) architecture, namely Densely-Accumulated Network (DANet), is introduced to learn the time-frequency representation transformed by the Wigner-Ville distribution. Such an architecture has several novel densely-accumulated connection modules specified by various symmetric and asymmetric convolutional layers to enrich diversified features at multiple representational maps. Besides, the skip-connection and dense-connection are leveraged to improve feature learning efficiency and prevent the vanishing gradient when the network goes deeper. Some image processing techniques (e.g., global thresholding and digital filtering) are adopted to enhance the quality of time-frequency image. Relying on simulations, we benchmark the proposed method on a synthetic 13-waveform dataset and also investigate the influence of hyper-parameters (such as image size, number of modules, training data size) on the overall recognition performance. Remarkably, with average accuracy of 98.2% at 0 dB signal-to-noise ratio (SNR), DANet outperforms several backbone CNNs and state-of-the-art networks of LPI waveform recognition while keeping a cost-efficient model.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen