Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed learning in wireless networks : recent progress and future challenges

Chen, Mingzhe; Gündüz, Deniz; Huang, Kaibin; Saad, Walid; Bennis, Mehdi; Feljan, Aneta Vulgarakis; Poor, H. Vincent (2021-10-06)

 
Avaa tiedosto
nbnfi-fe2022022320565.pdf (3.313Mt)
nbnfi-fe2022022320565_meta.xml (43.45Kt)
nbnfi-fe2022022320565_solr.xml (44.35Kt)
Lataukset: 

URL:
https://doi.org/10.1109/JSAC.2021.3118346

Chen, Mingzhe
Gündüz, Deniz
Huang, Kaibin
Saad, Walid
Bennis, Mehdi
Feljan, Aneta Vulgarakis
Poor, H. Vincent
Institute of Electrical and Electronics Engineers
06.10.2021

M. Chen et al., "Distributed Learning in Wireless Networks: Recent Progress and Future Challenges," in IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3579-3605, Dec. 2021, doi: 10.1109/JSAC.2021.3118346

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/JSAC.2021.3118346
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022022320565
Tiivistelmä

Abstract

The next-generation of wireless networks will enable many machine learning (ML) tools and applications to efficiently analyze various types of data collected by edge devices for inference, autonomy, and decision making purposes. However, due to resource constraints, delay limitations, and privacy challenges, edge devices cannot offload their entire collected datasets to a cloud server for centrally training their ML models or inference purposes. To overcome these challenges, distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges, thus reducing the communication overhead and latency as well as improving data privacy. However, deploying distributed learning over wireless networks faces several challenges including the uncertain wireless environment (e.g., dynamic channel and interference), limited wireless resources (e.g., transmit power and radio spectrum), and hardware resources (e.g., computational power). This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks. We present a detailed overview of several emerging distributed learning paradigms, including federated learning, federated distillation, distributed inference, and multi-agent reinforcement learning. For each learning framework, we first introduce the motivation for deploying it over wireless networks. Then, we present a detailed literature review on the use of communication techniques for its efficient deployment. We then introduce an illustrative example to show how to optimize wireless networks to improve its performance. Finally, we introduce future research opportunities. In a nutshell, this paper provides a holistic set of guidelines on how to deploy a broad range of distributed learning frameworks over real-world wireless communication networks.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen