Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Communication-efficient and federated multi-agent reinforcement learning

Krouka, Mounssif; Elgabli, Anis; Issaid, Chaouki Ben; Bennis, Mehdi (2021-11-26)

 
Avaa tiedosto
nbnfi-fe2022012811205.pdf (22.22Mt)
nbnfi-fe2022012811205_meta.xml (36.51Kt)
nbnfi-fe2022012811205_solr.xml (31.60Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCCN.2021.3130993

Krouka, Mounssif
Elgabli, Anis
Issaid, Chaouki Ben
Bennis, Mehdi
IEEE Communications Society
26.11.2021

M. Krouka, A. Elgabli, C. B. Issaid and M. Bennis, "Communication-Efficient and Federated Multi-Agent Reinforcement Learning," in IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 1, pp. 311-320, March 2022, doi: 10.1109/TCCN.2021.3130993

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCCN.2021.3130993
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022012811205
Tiivistelmä

Abstract

In this paper, we consider a distributed reinforcement learning setting where agents are communicating with a central entity in a shared environment to maximize a global reward. A main challenge in this setting is that the randomness of the wireless channel perturbs each agent’s model update while multiple agents’ updates may cause interference when communicating under limited bandwidth. To address this issue, we propose a novel distributed reinforcement learning algorithm based on the alternating direction method of multipliers (ADMM) and “over air aggregation” using analog transmission scheme, referred to as A-RLADMM. Our algorithm incorporates the wireless channel into the formulation of the ADMM method, which enables agents to transmit each element of their updated models over the same channel using analog communication. Numerical experiments on a multi-agent collaborative navigation task show that our proposed algorithm significantly outperforms the digital communication baseline of A-RLADMM (DRLADMM), the lazily aggregated policy gradient (RL-LAPG), as well as the analog and the digital communication versions of the vanilla FL, (A-FRL) and (D-FRL) respectively.

Kokoelmat
  • Avoin saatavuus [37542]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen