Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A learning-based trajectory planning of multiple UAVs for AoI minimization in IoT networks

Eldeeb, Eslam; Pérez, Dian Echevarría; de Souza Sant’Ana, Jean Michel; Shehab, Mohammad; Mahmood, Nurul Huda; Alves, Hirley; Latva-aho, Matti (2022-07-08)

 
Avaa tiedosto
nbnfi-fe2022082556319.pdf (460.2Kt)
nbnfi-fe2022082556319_meta.xml (47.73Kt)
nbnfi-fe2022082556319_solr.xml (36.10Kt)
Lataukset: 

URL:
10.1109/EuCNC/6GSummit54941.2022.9815722

Eldeeb, Eslam
Pérez, Dian Echevarría
de Souza Sant’Ana, Jean Michel
Shehab, Mohammad
Mahmood, Nurul Huda
Alves, Hirley
Latva-aho, Matti
Institute of Electrical and Electronics Engineers
08.07.2022

E. Eldeeb et al., "A Learning-Based Trajectory Planning of Multiple UAVs for AoI Minimization in IoT Networks," 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 172-177, doi: 10.1109/EuCNC/6GSummit54941.2022.9815722.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/eucnc/6gsummit54941.2022.9815722
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022082556319
Tiivistelmä

Abstract

Many emerging Internet of Things (IoT) applications rely on information collected by sensor nodes where the freshness of information is an important criterion. Age of Information (AoI) is a metric that quantifies information timeliness, i.e., the freshness of the received information or status update. This work considers a setup of deployed sensors in an IoT network, where multiple unmanned aerial vehicles (UAVs) serve as mobile relay nodes between the sensors and the base station. We formulate an optimization problem to jointly plan the UAVs’ trajectory, while minimizing the AoI of the received messages. This ensures that the received information at the base station is as fresh as possible. The complex optimization problem is efficiently solved using a deep reinforcement learning (DRL) algorithm. In particular, we propose a deep Q-network, which works as a function approximation to estimate the state-action value function. The proposed scheme is quick to converge and results in a lower AoI than the random walk scheme. Our proposed algorithm reduces the average age by approximately 25% and requires down to 50% less energy when compared to the baseline scheme.

Kokoelmat
  • Avoin saatavuus [38670]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen