Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unlucky explorer : a complete non-overlapping map exploration

Kiarostami, Mohammad Sina; Monfared, Saleh Khalaj; Daneshvaramoli, Mohammadreza; Yousefian, Negar; Massoud, Mahsa; Visuri, Aku; Hosio, Simo; Rahmati, Dara; Gorgin, Saeid (2022-02-25)

 
Avaa tiedosto
nbnfi-fe2022030221479.pdf (663.5Kt)
nbnfi-fe2022030221479_meta.xml (50.10Kt)
nbnfi-fe2022030221479_solr.xml (36.98Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3488838.3488864

Kiarostami, Mohammad Sina
Monfared, Saleh Khalaj
Daneshvaramoli, Mohammadreza
Yousefian, Negar
Massoud, Mahsa
Visuri, Aku
Hosio, Simo
Rahmati, Dara
Gorgin, Saeid
Association for Computing Machinery
25.02.2022

Mohammad Sina Kiarostami, Saleh Khalaj Monfared, Mohammadreza Daneshvaramoli, Negar Yousefian, Mahsa Massoud, Aku Visuri, Simo Hosio, Dara Rahmati, and Saeid Gorgin. 2021. Unlucky Explorer: A Complete non-Overlapping Map Exploration. In 2021 The 3rd World Symposium on Software Engineering (WSSE 2021). Association for Computing Machinery, New York, NY, USA, 150–154. DOI:https://doi.org/10.1145/3488838.3488864

https://rightsstatements.org/vocab/InC/1.0/
© 2021 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in 2021 The 3rd World Symposium on Software Engineering (WSSE 2021), https://doi.org/10.1145/3488838.3488864.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3488838.3488864
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022030221479
Tiivistelmä

Abstract

In this work, we introduce the Maze Dash puzzle as an exploration problem where the agent must find a Hamiltonian Path visiting all the cells with a minimum number of turnings for most cases. We also discuss the real-world application of the problem, such as 8 ball billiards and Snooker games. We investigate different methods by a focus on Monte-Carlo Tree Search (MCTS) and SAT to get an overview of which class of solutions solves the puzzle quickly and accurately. Also, we perform optimization to the proposed MCTS algorithm to prune the tree search. Also, since the prefabricated test cases of this puzzle are not large enough to assay the proposed method, we employ a technique to generate solvable test cases to evaluate the approaches. Eventually, our comparison indicates that the MCTS-based approach is an up-and-coming method that could cope with the test cases with small and medium sizes with faster run-time than SAT. However, for specific discussed reasons, including the features of the problem, tree search organization, and also the approach of MCTS in the Simulation step, MCTS takes more time to execute in large size scenarios. Our results can be employed to choose a proper approach to create an AI to solve the Maze Dash, 8 ball billiards, and Snooker games.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen