Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Informative class-conditioned feature alignment for unsupervised domain adaptation

Deng, Wanxia; Cui, Yawen; Liu, Zhen; Kuang, Gangyao; Hu, Dewen; Pietikäinen, Matti; Liu, Li (2021-10-17)

 
Avaa tiedosto
nbnfi-fe2022030121354.pdf (5.690Mt)
nbnfi-fe2022030121354_meta.xml (43.70Kt)
nbnfi-fe2022030121354_solr.xml (37.22Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3474085.3475579

Deng, Wanxia
Cui, Yawen
Liu, Zhen
Kuang, Gangyao
Hu, Dewen
Pietikäinen, Matti
Liu, Li
Association for Computing Machinery
17.10.2021

Wanxia Deng, Yawen Cui, Zhen Liu, Gangyao Kuang, Dewen Hu, Matti Pietikäinen, and Li Liu. 2021. Informative Class-Conditioned Feature Alignment for Unsupervised Domain Adaptation. Proceedings of the 29th ACM International Conference on Multimedia. Association for Computing Machinery, New York, NY, USA, 1303–1312. DOI:https://doi.org/10.1145/3474085.3475579

https://rightsstatements.org/vocab/InC/1.0/
© 2021 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Proceedings of the 29th ACM International Conference on Multimedia, https://doi.org/10.1145/3474085.3475579.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3474085.3475579
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022030121354
Tiivistelmä

Abstract

The goal of unsupervised domain adaptation is to learn a task classifier that performs well for the unlabeled target domain by borrowing rich knowledge from a well-labeled source domain. Although remarkable breakthroughs have been achieved in learning transferable representation across domains, two bottlenecks remain to be further explored. First, many existing approaches focus primarily on the adaptation of the entire image, ignoring the limitation that not all features are transferable and informative for the object classification task. Second, the features of the two domains are typically aligned without considering the class labels; this can lead the resulting representations to be domain-invariant but non-discriminative to the category. To overcome the two issues, we present a novel Informative Class-Conditioned Feature Alignment (IC2FA) approach for UDA, which utilizes a twofold method: informative feature disentanglement and class-conditioned feature alignment, designed to address the above two challenges, respectively. More specifically, to surmount the first drawback, we cooperatively disentangle the two domains to obtain informative transferable features; here, Variational Information Bottleneck (VIB) is employed to encourage the learning of task-related semantic representations and suppress task-unrelated information. With regard to the second bottleneck, we optimize a new metric, termed Conditional Sliced Wasserstein Distance (CSWD), which explicitly estimates the intra-class discrepancy and the inter-class margin. The intra-class and inter-class CSWDs are minimized and maximized, respectively, to yield the domain-invariant discriminative features. IC2FA equips class-conditioned feature alignment with informative feature disentanglement and causes the two procedures to work cooperatively, which facilitates informative discriminative features adaptation. Extensive experimental results on three domain adaptation datasets confirm the superiority of IC2FA.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen