Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unleashing GPUs for Network Function Virtualization : an open architecture based on Vulkan and Kubernetes

Haavisto, Juuso; Cholez, Thibault; Riekki, Jukka (2022-06-09)

 
Avaa tiedosto
nbnfi-fe2022062850135.pdf (398.9Kt)
nbnfi-fe2022062850135_meta.xml (31.51Kt)
nbnfi-fe2022062850135_solr.xml (32.30Kt)
Lataukset: 

URL:
https://doi.org/10.1109/NOMS54207.2022.9789822

Haavisto, Juuso
Cholez, Thibault
Riekki, Jukka
Institute of Electrical and Electronics Engineers
09.06.2022

J. Haavisto, T. Cholez and J. Riekki, "Unleashing GPUs for Network Function Virtualization: an open architecture based on Vulkan and Kubernetes," NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, 2022, pp. 1-8, doi: 10.1109/NOMS54207.2022.9789822

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/NOMS54207.2022.9789822
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022062850135
Tiivistelmä

Abstract

General-purpose computing on graphics processing units (GPGPU) is a promising way to speed up computationally intensive network functions, such as performing real-time traffic classification based on machine learning. Recent studies have focused on integrated graphics units and various performance optimizations to address bottlenecks such as latency. However, these approaches tend to produce architecture-specific binaries and lack the orchestration of functions. A complementary effort would be a GPGPU architecture based on standard and open components, which allows the creation of interoperable and orchestrable network functions. This study describes and evaluates such open architecture based on the cross-platform Vulkan API, in which we execute hand-written SPIR-V code as a network function. We also demonstrate a multi-node orchestration approach for our proposed architecture using Kubernetes. We validate our architecture by executing SPIR-V code performing traffic classification with random forest inference. We test this application both on discrete and integrated graphics cards and on x86 and ARM. We find that in all cases the GPUs are faster than the baseline Cython code.

Kokoelmat
  • Avoin saatavuus [38404]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen