Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint user association and resource allocation for wireless hierarchical federated learning with IID and non-IID data

Liu, Shengli; Yu, Guanding; Chen, Xianfu; Bennis, Mehdi (2022-04-04)

 
Avaa tiedosto
nbnfi-fe2022122072750.pdf (4.149Mt)
nbnfi-fe2022122072750_meta.xml (33.88Kt)
nbnfi-fe2022122072750_solr.xml (35.25Kt)
Lataukset: 

URL:
https://doi.org/10.1109/twc.2022.3162595

Liu, Shengli
Yu, Guanding
Chen, Xianfu
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
04.04.2022

S. Liu, G. Yu, X. Chen and M. Bennis, "Joint User Association and Resource Allocation for Wireless Hierarchical Federated Learning With IID and Non-IID Data," in IEEE Transactions on Wireless Communications, vol. 21, no. 10, pp. 7852-7866, Oct. 2022, doi: 10.1109/TWC.2022.3162595

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/twc.2022.3162595
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022122072750
Tiivistelmä

Abstract

In this work, hierarchical federated learning (HFL) over wireless multi-cell networks is proposed for large-scale model training while preserving data privacy. However, the imbalanced data distribution has a significant impact on the convergence rate and learning accuracy. In addition, a large learning latency is incurred due to the traffic load imbalance among base stations (BSs) and limited wireless resources. To cope with these challenges, we first provide an analysis of the model error and learning latency in wireless HFL. Then, joint user association and wireless resource allocation algorithms are investigated under independent identically distributed (IID) and non-IID training data, respectively. For the IID case, a learning latency aware strategy is designed to minimize the learning latency by optimizing user association and wireless resource allocation, where a mobile device selects the BS with the maximal uplink channel signal-to-noise ratio (SNR). For the non-IID case, the total data distribution distance and learning latency are jointly minimized to achieve the optimal user association and resource allocation. The results show that both data distribution and uplink channel SNR should be taken into consideration for user association in the non-IID case. Finally, the effectiveness of the proposed algorithms are demonstrated by the simulations.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen