Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Face video generation from a single image and landmarks

Songsri-in, Kritaphat; Zafeiriou, Stefanos (2021-01-18)

 
Avaa tiedosto
nbnfi-fe2022032124239.pdf (2.414Mt)
nbnfi-fe2022032124239_meta.xml (27.77Kt)
nbnfi-fe2022032124239_solr.xml (27.84Kt)
Lataukset: 

URL:
https://doi.org/10.1109/FG47880.2020.00104

Songsri-in, Kritaphat
Zafeiriou, Stefanos
IEEE
18.01.2021

K. Songsri-in and S. Zafeiriou, "Face Video Generation from a Single Image and Landmarks," 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 2020, pp. 69-76, doi: 10.1109/FG47880.2020.00104

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/FG47880.2020.00104
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022032124239
Tiivistelmä

Abstract

In this paper, we are concerned with the challenging problem of producing a full image sequence of a deformable face given only an image and generic facial motions encoded by a set of sparse landmarks. To this end, we build upon recent breakthroughs in image-to-image translation such as pix2pix, CycleGAN and StarGAN which learn Deep Convolutional Neural Networks (DCNNs) that learn to map aligned pairs of images between different domains (i.e., having different labels) and propose a new architecture which is not driven any more by labels but by spatial maps, facial landmarks. In particular, we propose the MotionGAN which transforms an input face image into a new one according to a heatmap of target landmarks. We show that it is possible to create very realistic face videos using a single image and a set of target landmarks. Furthermore, our method can be used to edit a facial image with arbitrary motions according to landmarks (e.g., expression, speech, etc.). This provides much more flexibility to face editing, expression transfer, facial video creation, etc. than models based on discrete expressions, audio or action units.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen