Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Communication-efficient split learning based on analog communication and over the air aggregation

Krouka, Mounssif; Elgabli, Anis; Issaid, Chaouki ben; Bennis, Mehdi (2022-02-02)

 
Avaa tiedosto
nbnfi-fe2022022320601.pdf (1.331Mt)
nbnfi-fe2022022320601_meta.xml (37.31Kt)
nbnfi-fe2022022320601_solr.xml (30.50Kt)
Lataukset: 

URL:
https://doi.org/10.1109/GLOBECOM46510.2021.9685045

Krouka, Mounssif
Elgabli, Anis
Issaid, Chaouki ben
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
02.02.2022

M. Krouka, A. Elgabli, C. b. Issaid and M. Bennis, "Communication-Efficient Split Learning Based on Analog Communication and Over the Air Aggregation," 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.2021.9685045

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/GLOBECOM46510.2021.9685045
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022022320601
Tiivistelmä

Abstract

Split-learning (SL) has recently gained popularity due to its inherent privacy-preserving capabilities and ability to enable collaborative inference for devices with limited computational power. Standard SL algorithms assume an ideal underlying digital communication system and ignore the problem of scarce communication bandwidth. However, for a large number of agents, limited bandwidth resources, and time-varying commu-nication channels, the communication bandwidth can become the bottleneck. To address this challenge, in this work, we propose a novel SL framework to solve the remote inference problem that introduces an additional layer at the agent side and constrains the choices of the weights and the biases to ensure over the air aggregation. Hence, the proposed approach maintains constant communication cost with respect to the number of agents enabling remote inference under limited bandwidth. Numerical results show that our proposed algorithm significantly outper-forms the digital implementation in terms of communication-efficiency” especially as the number of agents grows large.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen