Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Context-driven encrypted multimedia traffic classification on mobile devices

Hoque, Mohammad A.; Finley, Benjamin; Rao, Ashwin; Kumar, Abhishek; Hui, Pan; Ammar, Mostafa; Tarkoma, Sasu (2022-04-27)

 
Avaa tiedosto
nbnfi-fe2022101161595.pdf (439.3Kt)
nbnfi-fe2022101161595_meta.xml (41.75Kt)
nbnfi-fe2022101161595_solr.xml (35.79Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PerCom53586.2022.9762389

Hoque, Mohammad A.
Finley, Benjamin
Rao, Ashwin
Kumar, Abhishek
Hui, Pan
Ammar, Mostafa
Tarkoma, Sasu
Institute of Electrical and Electronics Engineers
27.04.2022

M. A. Hoque et al., "Context-driven Encrypted Multimedia Traffic Classification on Mobile Devices," 2022 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2022, pp. 54-64, doi: 10.1109/PerCom53586.2022.9762389.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PerCom53586.2022.9762389
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022101161595
Tiivistelmä

Abstract

The Internet has been experiencing immense growth in multimedia traffic from mobile devices. The increase in traffic presents many challenges to user-centric networks, network operators, and service providers. Foremost among these challenges is the inability of networks to determine the types of encrypted traffic and thus the level of network service the traffic needs for maintaining an acceptable quality of experience. Therefore, end devices are a natural fit for performing traffic classification since end devices have more contextual information about the device usage and traffic. This paper proposes a novel approach that classifies multimedia traffic types produced and consumed on mobile devices. The technique relies on a mobile device’s detection of its multimedia context characterized by its utilization of different media input/output components, e.g., camera, microphone, and speaker. We develop an algorithm, MediaSense, which senses the states of multiple I/O components and identifies the specific multimedia context of a mobile device in real-time. We demonstrate that MediaSense classifies encrypted multimedia traffic in real-time as accurately as deep learning approaches and with even better generalizability.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen