Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transfer learning based GPS spoofing detection for cellular-connected UAVs

Dang, Yongchao; Benzaïd, Chafika; Taleb, Tarik; Yang, Bin; Shen, Yulong (2022-07-19)

 
Avaa tiedosto
nbnfi-fe2022092660068.pdf (902.6Kt)
nbnfi-fe2022092660068_meta.xml (38.55Kt)
nbnfi-fe2022092660068_solr.xml (36.27Kt)
Lataukset: 

URL:
https://doi.org/10.1109/iwcmc55113.2022.9824124

Dang, Yongchao
Benzaïd, Chafika
Taleb, Tarik
Yang, Bin
Shen, Yulong
Institute of Electrical and Electronics Engineers
19.07.2022

Y. Dang, C. Benzaïd, T. Taleb, B. Yang and Y. Shen, "Transfer Learning based GPS Spoofing Detection for Cellular-Connected UAVs," 2022 International Wireless Communications and Mobile Computing (IWCMC), 2022, pp. 629-634, doi: 10.1109/IWCMC55113.2022.9824124.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/IWCMC55113.2022.9824124
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022092660068
Tiivistelmä

Abstract

Unmanned Aerial Vehicles (UAVs) are set to become an integral part of 5G and beyond systems with the promise of assisting cellular communications and enabling advanced applications and services, such as public safety, caching, and virtual/mixed reality-based remote inspection. However, safe and secure navigation of UAVs is a key requisite for their integration in the airspace. The GPS spoofing is one of the major security threats to remotely and autonomously controlled UAVs. In this paper, we propose a machine learning-based, mobile network-assisted UAV monitoring and control system that allows live monitoring of UAVs’ locations and intelligent detection of spoofed positions. We introduce the Convolutional Neural Network (CNN) in the edge UAV Flight Controller (UFC) to locate a UAV and detect any GPS spoofing by comparing differences between the theoretical path loss computed by UFC and the corresponding path loss reported by the connected base station (BS). To reduce the detection latency as well as to increase the detection accuracy, transfer learning is leveraged to transfer the CNN knowledge between edge servers when the UAV handovers from one BS to another. The performance evaluation shows that the proposed solution can successfully detect spoofed GPS positions with an accuracy rate above 88% using only one BS.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen