Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Me in the wild : an exploratory study using smartphones to detect the onset of depression

Opoku Asare, Kennedy; Visuri, Aku; Vega, Julio; Ferreira, Denzil (2022-06-07)

 
Avaa tiedosto
nbnfi-fe2022092159802.pdf (964.3Kt)
nbnfi-fe2022092159802_meta.xml (41.49Kt)
nbnfi-fe2022092159802_solr.xml (35.82Kt)
Lataukset: 

URL:
https://doi.org/10.1007/978-3-031-06368-8_9

Opoku Asare, Kennedy
Visuri, Aku
Vega, Julio
Ferreira, Denzil
Springer Nature
07.06.2022

Opoku Asare, K., Visuri, A., Vega, J., Ferreira, D. (2022). Me in the Wild: An Exploratory Study Using Smartphones to Detect the Onset of Depression. In: Gao, X., Jamalipour, A., Guo, L. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-031-06368-8_9

https://rightsstatements.org/vocab/InC/1.0/
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2022. This is a post-peer-review, pre-copyedit version of an article published in Wireless mobile communication and healthcare : 10th EAI International Conference, MobiHealth 2021. Virtual event, November 13–14, 2021, proceeedings. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-06368-8_9.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1007/978-3-031-06368-8_9
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022092159802
Tiivistelmä

Abstract

Research on mobile sensing for mental health monitoring has traditionally explored the correlation between smartphone and wearable data with self-reported mental health symptom severity assessments. The effectiveness of predictive techniques to monitor depression is limited, given the idiosyncratic nature of depression symptoms and the limited availability of objectively labelled depression sensor-driven behaviour. In this paper, we investigate the possibility of using unsupervised anomaly detection methods to monitor the fluctuations of mental health and its severity. Informed by literature, we created a mobile application that collects acknowledged data streams that can be indicative of depression. We recruited 11 participants for a 1-month field study. More specifically, we monitored participants’ mobility, overall smartphone interactions, and surrounding ambient noise. The participants provided three self-reports: Big five personality traits, sleep and depression. Our results suggest that digital markers, combined with anomaly detection methods are useful to flag changes in human behaviour over time; thus, enabling mobile just-in-time interventions for in-the-wild assistance.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen