Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-contact pain recognition from video sequences with remote physiological measurements prediction

Yang, Ruijing; Guan, Ziyu; Yu, Zitong; Feng, Xiaoyi; Peng, Jinye; Zhao, Guoying (2021-08-19)

 
Avaa tiedosto
nbnfi-fe202201189161.pdf (450.2Kt)
nbnfi-fe202201189161_meta.xml (42.95Kt)
nbnfi-fe202201189161_solr.xml (32.83Kt)
Lataukset: 

URL:
https://doi.org/10.24963/ijcai.2021/170

Yang, Ruijing
Guan, Ziyu
Yu, Zitong
Feng, Xiaoyi
Peng, Jinye
Zhao, Guoying
International Joint Conferences on Artificial Intelligence
19.08.2021

Yang, R., Guan, Z., Yu, Z., Feng, X., Peng, J., & Zhao, G. (2021). Non-contact Pain Recognition from Video Sequences with Remote Physiological Measurements Prediction. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2021/170

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IJCAI.org.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.24963/ijcai.2021/170
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202201189161
Tiivistelmä

Abstract

Automatic pain recognition is paramount for medical diagnosis and treatment. The existing works fall into three categories: assessing facial appearance changes, exploiting physiological cues, or fusing them in a multi-modal manner. However, (1) appearance changes are easily affected by subjective factors which impedes objective pain recognition. Besides, the appearance-based approaches ignore long-range spatial-temporal dependencies that are important for modeling expressions over time; (2) the physiological cues are obtained by attaching sensors on human body, which is inconvenient and uncomfortable. In this paper, we present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition. The framework is able to capture both local and long-range dependencies via the proposed attention mechanism for the learned appearance representations, which are further enriched by temporally attended physiological cues (remote photoplethysmography, rPPG) that are recovered from videos in the auxiliary task. This framework is dubbed rPPG-enriched Spatio-Temporal Attention Network (rSTAN) and allows us to establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases. It demonstrates that rPPG predictions can be used as an auxiliary task to facilitate non-contact automatic pain recognition.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen