Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Boosting monocular depth estimation with lightweight 3D point fusion

Huynh, Lam; Nguyen, Phong; Matas, Jiri; Rahtu, Esa; Heikkilä, Janne (2022-02-28)

 
Avaa tiedosto
nbnfi-fe2022030421975.pdf (7.171Mt)
nbnfi-fe2022030421975_meta.xml (37.78Kt)
nbnfi-fe2022030421975_solr.xml (31.96Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICCV48922.2021.01253

Huynh, Lam
Nguyen, Phong
Matas, Jiri
Rahtu, Esa
Heikkilä, Janne
IEEE Computer Society
28.02.2022

L. Huynh, P. Nguyen, J. Matas, E. Rahtu and J. Heikkilä, "Boosting Monocular Depth Estimation with Lightweight 3D Point Fusion," 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 12747-12756, doi: 10.1109/ICCV48922.2021.01253

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICCV48922.2021.01253
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022030421975
Tiivistelmä

Abstract

In this paper, we propose enhancing monocular depth estimation by adding 3D points as depth guidance. Unlike existing depth completion methods, our approach performs well on extremely sparse and unevenly distributed point clouds, which makes it agnostic to the source of the 3D points. We achieve this by introducing a novel multi-scale 3D point fusion network that is both lightweight and efficient. We demonstrate its versatility on two different depth estimation problems where the 3D points have been acquired with conventional structure-from-motion and Li-DAR. In both cases, our network performs on par with state-of-the-art depth completion methods and achieves significantly higher accuracy when only a small number of points is used while being more compact in terms of the number of parameters. We show that our method outperforms some contemporary deep learning based multi-view stereo and structure-from-motion methods both in accuracy and in compactness.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen