Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Road map for implementing AI-driven Oulu Smart excavator

Mehmood, Hassan; Hiltunen, Mikko; Makkonen, Tomi; Immonen, Matti; Pirttikangas, Susanna; Heikkilä, Rauno (2021-11-02)

 
Avaa tiedosto
nbnfi-fe202201132300.pdf (387.2Kt)
nbnfi-fe202201132300_meta.xml (49.91Kt)
nbnfi-fe202201132300_solr.xml (36.11Kt)
Lataukset: 

URL:
http://www.iaarc.org/publications/2021_proceedings_of_the_38th_isarc/road_map_for_implementing_ai_driven_oulu_smart_excavator.html

Mehmood, Hassan
Hiltunen, Mikko
Makkonen, Tomi
Immonen, Matti
Pirttikangas, Susanna
Heikkilä, Rauno
International Association for Automation and Robotics in Construction
02.11.2021

Mehmood, Hassan; Hiltunen, Mikko; Makkonen, Tomi; Immonen, Matti; Pirttikangas, Susanna (2021) Road map for implementing AI-driven Oulu Smart excavator. In: Chen Feng, Thomas Linner, Ioannis Brilakis (eds.) Proceedings of the ...ISARC, Proceedings of the 38th International Symposium on Automation and Robotics in Construction (ISARC 2021), Dubai, United Arab Emirates, November 2-4, 2021, (pp. 819-826). International association for automation and robotics in construction.

https://rightsstatements.org/vocab/InC/1.0/
© 2021 International Association on Automation and Robotics in Construction.
https://rightsstatements.org/vocab/InC/1.0/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202201132300
Tiivistelmä

Abstract

Evolving machine control systems for excavators are getting more capable every year in civil engineering, now they are usually equipped with hydraulic motion control, localization, and design models in form of building information modelling (BIM). Machine control systems are advancing side by side with the adoption of fast wireless connections like 5G and growing trends of internet of things (IoT) and machine learning. AI across our ecosystem has made autonomous excavator more ubiquitous in nature. The autonomous excavators have gained significant interest in earth works area, due to their enhanced productivity for long hours, safety and lack of skilled human operators, and space exploration for unmanned mining and construction work.

However, A great amount of effort is required to address many existing challenges such as, adaptive movement and control, task planning (digging, moving debris etc.), continuous environment sensing, avoiding collision (moving animals or objects on site), collaborative work with other machines and humans. In this study, we review state of the art and provide a artificial intelligence (AI-) driven road map for implementing a complete autonomous framework for earthmoving machine to our autonomous excavator test platform ’Smart Excavator’. Furthermore, the challenges and required effort to implement the framework are also discussed in comparison with existing literature.

Kokoelmat
  • Avoin saatavuus [38358]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen