Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recursive data analysis in large scale complex systems

Juuso, Esko K. (2018-12-31)

 
Avaa tiedosto
nbnfi-fe2022022120224.pdf (678.2Kt)
nbnfi-fe2022022120224_meta.xml (30.49Kt)
nbnfi-fe2022022120224_solr.xml (32.14Kt)
Lataukset: 

URL:
https://doi.org/10.3384/ecp171421053

Juuso, Esko K.
Linköping University Electronic Press
31.12.2018

Juuso, Esko K. (2018) Recursive data analysis in large scale complex systems. In: Linköping Electronic Conference Proceedings vol. 142, Proceedings of the 9th EUROSIM Congress on Modelling and Simulation, 12-16 September 2016 in Oulu, Finland, (pp.1053-1059). http://dx.doi.org/10.3384/ecp171421053

https://rightsstatements.org/vocab/InC/1.0/
© Scandinavian Simulation Society, 2018.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.3384/ecp171421053
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022022120224
Tiivistelmä

Abstract

Advanced data analysis is needed in practical applications in large scale complex systems. Variable specific datadriven solutions provide consistent levels, which can be used in compact model structures. In changing operating conditions, the recursive analysis extends the applicability of these structures in building and tuning dynamic and case-based models for complex systems since the meanings change more frequently than the interactions. The methodology provides information about uncertainty, fluctuations and confidence in results. The scaling approach brings temporal analysis to all measurements and features: trend indices are calculated by comparing the averages in the long and short time windows, a weighted sum of the trend index and its derivative detects the trend episodes and severity of the trend is estimated by including also the variable level in the sum. The trend episodes and temporal adaptation of the scaling functions with time are used in the early detection of changes in the operating conditions. The levels are understood as fuzzy labels and the decision making is based on fuzzy calculus. The solution is highly compact: all variables, features and indices are transformed to the range [-2, 2] and represented in natural language which is important in integrating datadriven solutions with domain expertise.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen