3D high-fidelity mask face presentation attack detection challenge
Liu, Ajian; Zhao, Chenxu; Yu, Zitong; Su, Anyang; Liu, Xing; Kong, Zijian; Wan, Jun; Escalera, Sergio; Escalante, Hugo Jair; Lei, Zhen; Guo, Guodong (2021-11-24)
A. Liu et al., "3D High-Fidelity Mask Face Presentation Attack Detection Challenge," 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021, pp. 814-823, doi: 10.1109/ICCVW54120.2021.00096
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
https://urn.fi/URN:NBN:fi-fe2022021719723
Tiivistelmä
Abstract
The threat of 3D masks to face recognition systems is increasingly serious and has been widely concerned by researchers. To facilitate the study of the algorithms, a largescale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask (briefly HiFiMask) has been collected. Specifically, it consists of a total amount of 54,600 videos which are recorded from 75 subjects with 225 realistic masks under 7 new kinds of sensors [21]. Based on this dataset and Protocol 3 which evaluates both the discrimination and generalization ability of the algorithm under the open set scenarios, we organized a 3D High-Fidelity Mask Face Presentation Attack Detection Challenge to boost the research of 3D mask-based attack detection. It attracted 195 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-run by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including the introduction of the dataset used, the definition of the protocol, the calculation of the evaluation criteria, and the summary and publication of the competition results. Finally, we focus on introducing and analyzing the top ranking algorithms, the conclusion summary, and the research ideas for mask attack detection provided by this competition.
Kokoelmat
- Avoin saatavuus [34589]