Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep neural network-based blind multiple user detection for grant-free multi-user shared access

Sivalingam, Thushan; Ali, Samad; Mahmood, Nurul Huda; Rajatheva, Nandana; Latva-Aho, Matti (2021-10-22)

 
Avaa tiedosto
nbnfi-fe2022020417648.pdf (554.3Kt)
nbnfi-fe2022020417648_meta.xml (40.45Kt)
nbnfi-fe2022020417648_solr.xml (33.26Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PIMRC50174.2021.9569446

Sivalingam, Thushan
Ali, Samad
Mahmood, Nurul Huda
Rajatheva, Nandana
Latva-Aho, Matti
Institute of Electrical and Electronics Engineers
22.10.2021

T. Sivalingam, S. Ali, N. Huda Mahmood, N. Rajatheva and M. Latva-Aho, "Deep Neural Network-Based Blind Multiple User Detection for Grant-free Multi-User Shared Access," 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021, pp. 1-7, doi: 10.1109/PIMRC50174.2021.9569446

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PIMRC50174.2021.9569446
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022020417648
Tiivistelmä

Abstract

Multi-user shared access (MUSA) is introduced as advanced code domain non-orthogonal complex spreading sequences to support a massive number of machine-type communications (MTC) devices. In this paper, we propose a novel deep neural network (DNN)-based multiple user detection (MUD) for grant-free MUSA systems. The DNN-based MUD model determines the structure of the sensing matrix, randomly distributed noise, and inter-device interference during the training phase of the model by several hidden nodes, neuron activation units, and a fit loss function. The thoroughly learned DNN model is capable of distinguishing the active devices of the received signal without any a priori knowledge of the device sparsity level and the channel state information. Our numerical evaluation shows that with a higher percentage of active devices, the DNN-MUD achieves a significantly increased probability of detection compared to the conventional approaches.

Kokoelmat
  • Avoin saatavuus [38865]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen