Exploring the potential for utilization of medium and highly sulfidic mine tailings in construction materials : a review
Martins, Natalia Pires; Srivastava, Sumit; Simão, Francisco Veiga; Niu, He; Perumal, Priyadharshini; Snellings, Ruben; Illikainen, Mirja; Chambart, Hilde; Habert, Guillaume (2021-11-03)
Martins, N.P.; Srivastava, S.; Simão, F.V.; Niu, H.; Perumal, P.; Snellings, R.; Illikainen, M.; Chambart, H.; Habert, G. Exploring the Potential for Utilization of Medium and Highly Sulfidic Mine Tailings in Construction Materials: A Review. Sustainability 2021, 13, 12150. https://doi.org/10.3390/su132112150
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
https://creativecommons.org/licenses/by/4.0/
https://urn.fi/URN:NBN:fi-fe2022020717859
Tiivistelmä
Abstract
Medium and highly sulfidic tailings are high-volume wastes that can lead to severe environmental damage if not properly managed. Due to the high content of sulfide minerals, these tailings can undergo weathering if put in contact with oxygen and water, generating acid mine drainage (AMD). The moderate-to-high sulfide content is also an important technical limitation for their implementation in the production of construction materials. This paper reviews the use of sulfidic tailings as raw material in construction products, with a focus on cement, concrete, and ceramics. When used as aggregates in concrete, this can lead to concrete degradation by internal sulfate attack. In building ceramics, their implementation without prior treatment is undesirable due to the formation of black reduction core, efflorescence, SOₓ emissions, and their associated costs. Moreover, their intrinsic low reactivity represents a barrier for their use as supplementary cementitious materials (SCMs) and as precursors for alkali-activated materials (AAMs). Nevertheless, the production of calcium sulfoaluminate (CSA) cement can be a suitable path for the valorization of medium and highly sulfidic tailings. Otherwise difficult to upcycle, sulfidic tailings could be used in the clinker raw meal as an alternative raw material. Not only the SO₃ and SiO₂-rich bulk material is incorporated into reactive clinker phases, but also some minor constituents in the tailings may contribute to the production of such low-CO₂ cements at lower temperatures. Nevertheless, this valorization route remains poorly explored and demands further research.
Kokoelmat
- Avoin saatavuus [34589]