Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Micro-expression recognition with noisy labels

Varanka, Tuomas; Peng, Wei; Zhao, Guoying (2022-01-01)

 
Avaa tiedosto
nbnfi-fe202201144837.pdf (736.4Kt)
nbnfi-fe202201144837_meta.xml (40.73Kt)
nbnfi-fe202201144837_solr.xml (30.96Kt)
Lataukset: 

URL:
https://www.ingentaconnect.com/content/ist/ei/2021/00002021/00000011/art00009

Varanka, Tuomas
Peng, Wei
Zhao, Guoying
Society for Imaging Science & Technology
01.01.2022

Varanka, Tuomas; Peng, Wei; Zhao, Guoying (2021) Micro-expression recognition with noisy labels. In Chandler D.; McCourt M.; Mulligan J. (eds.) Human Vision and Electronic Imaging 2021, Held at IS&T International Symposium on Electronic Imaging Science and Technology 2021, (pp. 157-1-157-8). Society for imaging science and technology.

https://rightsstatements.org/vocab/InC/1.0/
© 2021, Society for Imaging Science and Technology.
https://rightsstatements.org/vocab/InC/1.0/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202201144837
Tiivistelmä

Abstract

Facial micro-expressions are quick, involuntary and low intensity facial movements. An interest in detecting and recognizing micro-expressions arises from the fact that they are able to show person’s genuine hidden emotions. The small and rapid facial muscle movements are often too difficult for a human to not only spot the occurring micro-expression but also be able to recognize the emotion correctly. Recently, a focus on developing better micro-expression recognition methods has been on models and architectures. However, we take a step back and go to the root of task, the data.

We thoroughly analyze the input data and notice that some of the data is noisy and possibly mislabelled. The authors of the micro-expression datasets have also acknowledged the possible problems in data labelling. Despite this, no attempts have been made to design models that take into account the potential mislabelled data in micro-expression recognition, to our best knowledge. In this paper, we explore new methods taking noisy labels into special account in an attempt to solve the problem. We propose a simple, yet efficient label refurbishing method and a data cleaning method for handling noisy labels. The data cleaning method achieves state-of-the-art results in the MEGC2019 composite dataset.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen