Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Age-optimal power allocation in industrial IoT : a risk-sensitive federated learning approach

Hsu, Yung-Lin; Liu, Chen-Feng; Samarakoon, Sumudu; Wei, Hung-Yu; Bennis, Mehdi (2021-10-22)

 
Avaa tiedosto
nbnfi-fe2022022821135.pdf (632.0Kt)
nbnfi-fe2022022821135_meta.xml (38.40Kt)
nbnfi-fe2022022821135_solr.xml (33.91Kt)
Lataukset: 

URL:
https://doi.org/10.1109/PIMRC50174.2021.9569536

Hsu, Yung-Lin
Liu, Chen-Feng
Samarakoon, Sumudu
Wei, Hung-Yu
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
22.10.2021

Y. -L. Hsu, C. -F. Liu, S. Samarakoon, H. -Y. Wei and M. Bennis, "Age-Optimal Power Allocation in Industrial IoT: A Risk-Sensitive Federated Learning Approach," 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021, pp. 1323-1328, doi: 10.1109/PIMRC50174.2021.9569536

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/PIMRC50174.2021.9569536
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022022821135
Tiivistelmä

Abstract

This work studies a real-time environment monitoring scenario in the industrial Internet of things, where wireless sensors proactively collect environmental data and transmit it to the controller. We adopt the notion of risk-sensitivity in financial mathematics as the objective to jointly minimize the mean, variance, and other higher-order statistics of the network energy consumption subject to the constraints on the age of information (AoI) threshold violation probability and the AoI exceedances over a pre-defined threshold. We characterize the extreme AoI staleness using results in extreme value theory and propose a distributed power allocation approach by weaving in together principles of Lyapunov optimization and federated learning (FL). Simulation results demonstrate that the proposed FL-based distributed solution is on par with the centralized baseline while consuming 28.50% less system energy and outperforms the other baselines.

Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen