Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

The MuSe 2021 multimodal sentiment analysis challenge : sentiment, emotion, physiological-emotion, and stress

Stappen, Lukas; Baird, Alice; Christ, Lukas; Schumann, Lea; Sertolli, Benjamin; Messner, Eva-Maria; Cambria, Erik; Zhao, Guoying; Schuller, Björn W. (2021-10-20)

 
Avaa tiedosto
nbnfi-fe2022022420753.pdf (1.516Mt)
nbnfi-fe2022022420753_meta.xml (47.61Kt)
nbnfi-fe2022022420753_solr.xml (35.76Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3475957.3484450

Stappen, Lukas
Baird, Alice
Christ, Lukas
Schumann, Lea
Sertolli, Benjamin
Messner, Eva-Maria
Cambria, Erik
Zhao, Guoying
Schuller, Björn W.
Association for Computing Machinery
20.10.2021

Lukas Stappen, Alice Baird, Lukas Christ, Lea Schumann, Benjamin Sertolli, Eva-Maria Meßner, Erik Cambria, Guoying Zhao, and Björn W. Schuller. 2021. The MuSe 2021 Multimodal Sentiment Analysis Challenge: Sentiment, Emotion, Physiological-Emotion, and Stress. Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge. Association for Computing Machinery, New York, NY, USA, 5–14. DOI:https://doi.org/10.1145/3475957.3484450

https://rightsstatements.org/vocab/InC/1.0/
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3475957.348445
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022022420753
Tiivistelmä

Abstract

Multimodal Sentiment Analysis (MuSe) 2021 is a challenge focusing on the tasks of sentiment and emotion, as well as physiological-emotion and emotion-based stress recognition through more comprehensively integrating the audio-visual, language, and biological signal modalities. The purpose of MuSe 2021 is to bring together communities from different disciplines; mainly, the audio-visual emotion recognition community (signal-based), the sentiment analysis community (symbol-based), and the health informatics community. We present four distinct sub-challenges: MuSe-Wilder and MuSe-Stress which focus on continuous emotion (valence and arousal) prediction; MuSe-Sent, in which participants recognise five classes each for valence and arousal; and MuSe-Physio, in which the novel aspect of ‘physiological-emotion’ is to be predicted. For this year’s challenge, we utilise the MuSe-CaR dataset focusing on user-generated reviews and introduce the Ulm-TSST dataset, which displays people in stressful depositions. This paper also provides detail on the state-of-the-art feature sets extracted from these datasets for utilisation by our baseline model, a Long Short-Term Memory-Recurrent Neural Network. For each sub-challenge, a competitive baseline for participants is set; namely, on test, we report a Concordance Correlation Coefficient (CCC) of .4616 CCC for MuSe-Wilder; .5088 CCC for MuSe-Stress, and .4908 CCC for MuSe-Physio. For MuSe-Sent an F1 score of 32.82% is obtained.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen