Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Attention-based reinforcement learning for real-time UAV semantic communication

Yun, Won Joon; Lim, Byungju; Jung, Soyi; Ko, Young-Chai; Park, Jihong; Kim, Joongheon; Bennis, Mehdi (2021-10-14)

 
Avaa tiedosto
nbnfi-fe2022032124247.pdf (896.3Kt)
nbnfi-fe2022032124247_meta.xml (41.07Kt)
nbnfi-fe2022032124247_solr.xml (32.73Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ISWCS49558.2021.9562230

Yun, Won Joon
Lim, Byungju
Jung, Soyi
Ko, Young-Chai
Park, Jihong
Kim, Joongheon
Bennis, Mehdi
Institute of Electrical and Electronics Engineers
14.10.2021

W. J. Yun et al., "Attention-based Reinforcement Learning for Real-Time UAV Semantic Communication," 2021 17th International Symposium on Wireless Communication Systems (ISWCS), 2021, pp. 1-6, doi: 10.1109/ISWCS49558.2021.9562230

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ISWCS49558.2021.9562230
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022032124247
Tiivistelmä

Abstract

In this article, we study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user. This is done by controlling multiple unmanned aerial vehicles (UAVs) in real time while avoiding inter-UAV collisions. To this end, we propose a novel multiagent deep reinforcement learning (MADRL) framework, coined a graph attention exchange network (GAXNet). In GAXNet, each UAV constructs an attention graph locally measuring the level of attention to its neighboring UAVs, while exchanging the attention weights with other UAVs so as to reduce the attention mismatch between them. Simulation results corroborates that GAXNet achieves up to 4.5x higher rewards during training. At execution, without incurring inter-UAV collisions, G2ANet improves reliability of air-to-ground network in terms of latency and error rate.

Kokoelmat
  • Avoin saatavuus [38841]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen