Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

RGBD-Net : predicting color and depth images for novel views synthesis

Nguyen, Phong; Karnewar, Animesh; Huynh, Lam; Rahtu, Esa; Matas, Jiri; Heikkilä, Janne (2022-01-06)

 
Avaa tiedosto
nbnfi-fe2022032124245.pdf (10.83Mt)
nbnfi-fe2022032124245_meta.xml (40.45Kt)
nbnfi-fe2022032124245_solr.xml (33.23Kt)
Lataukset: 

URL:
https://doi.org/10.1109/3DV53792.2021.00117

Nguyen, Phong
Karnewar, Animesh
Huynh, Lam
Rahtu, Esa
Matas, Jiri
Heikkilä, Janne
Institute of Electrical and Electronics Engineers
06.01.2022

P. Nguyen, A. Karnewar, L. Huynh, E. Rahtu, J. Matas and J. Heikkila, "RGBD-Net: Predicting Color and Depth Images for Novel Views Synthesis," 2021 International Conference on 3D Vision (3DV), 2021, pp. 1095-1105, doi: 10.1109/3DV53792.2021.00117

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/3DV53792.2021.00117
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022032124245
Tiivistelmä

Abstract

We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network. The former one predicts depth maps of the target views by using adaptive depth scaling, while the latter one leverages the predicted depths and renders spatially and temporally consistent target images. In the experimental evaluation on standard datasets, RGBD-Net not only outperforms the state-of-the-art by a clear margin, but it also generalizes well to new scenes without per-scene optimization. Moreover, we show that RGBD-Net can be optionally trained without depth supervision while still retaining high-quality rendering. Thanks to the depth regression network, RGBD-Net can be also used for creating dense 3D point clouds that are more accurate than those produced by some state-of-the-art multi-view stereo methods.

Kokoelmat
  • Avoin saatavuus [37606]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen