Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing stable resultant-based minimal solvers by hiding a variable

Bhayani, Snehal; Kukelova, Zuzana; Heikkilä, Janne (2021-05-05)

 
Avaa tiedosto
nbnfi-fe2022032124242.pdf (1.021Mt)
nbnfi-fe2022032124242_meta.xml (32.48Kt)
nbnfi-fe2022032124242_solr.xml (35.05Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICPR48806.2021.9411957

Bhayani, Snehal
Kukelova, Zuzana
Heikkilä, Janne
IEEE Computer Society
05.05.2021

S. Bhayani, Z. Kukelova and J. Heikkilä, "Computing stable resultant-based minimal solvers by hiding a variable," 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp. 6104-6111, doi: 10.1109/ICPR48806.2021.9411957

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICPR48806.2021.9411957
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022032124242
Tiivistelmä

Abstract

Many computer vision applications require robust and efficient estimation of camera geometry. The robust estimation is usually based on solving camera geometry problems from a minimal number of input data measurements, i.e., solving minimal problems, in a RANSAC-style framework. Minimal problems often result in complex systems of polynomial equations. The existing state-of-the-art methods for solving such systems are either based on Gröbner bases and the action matrix method, which have been extensively studied and optimized in the recent years or recently proposed approach based on a resultant computation using an extra variable. In this paper, we study an interesting alternative resultant-based method for solving sparse systems of polynomial equations by hiding one variable. This approach results in a larger eigenvalue problem than the action matrix and extra variable resultant-based methods; however, it does not need to compute an inverse or elimination of large matrices that may be numerically unstable. The proposed approach includes several improvements to the standard sparse resultant algorithms, which significantly improves the efficiency and stability of the hidden variable resultant-based solvers as we demonstrate on several interesting computer vision problems. We show that for the studied problems, our sparse resultant based approach leads to more stable solvers than the state-of-the-art Gröbner basis as well as existing resultant-based solvers, especially in close to critical configurations. Our new method can be fully automated and incorporated into existing tools for the automatic generation of efficient minimal solvers.

Kokoelmat
  • Avoin saatavuus [37744]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen