Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

LEARNET : reinforcement learning based flow scheduling for asynchronous deterministic networks

Prados-Garzon, Jonathan; Taleb, Tarik; Bagaa, Miloud (2020-07-27)

 
Avaa tiedosto
nbnfi-fe2022032124194.pdf (10.02Mt)
nbnfi-fe2022032124194_meta.xml (30.63Kt)
nbnfi-fe2022032124194_solr.xml (31.52Kt)
Lataukset: 

URL:
https://doi.org/10.1109/ICC40277.2020.9149092

Prados-Garzon, Jonathan
Taleb, Tarik
Bagaa, Miloud
Institute of Electrical and Electronics Engineers
27.07.2020

J. Prados-Garzon, T. Taleb and M. Bagaa, "LEARNET: Reinforcement Learning Based Flow Scheduling for Asynchronous Deterministic Networks," ICC 2020 - 2020 IEEE International Conference on Communications (ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9149092

https://rightsstatements.org/vocab/InC/1.0/
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/ICC40277.2020.9149092
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022032124194
Tiivistelmä

Abstract

Time-Sensitive Networking (TSN) and Deterministic Networking (DetNet) standards come to satisfy the needs of many industries for deterministic network services. That is the ability to establish a multi-hop path over an IP network for a given flow with deterministic Quality of Service (QoS) guarantees in terms of latency, jitter, packet loss, and reliability. In this work, we propose a reinforcement learning-based solution, which is dubbed LEARNET, for the flow scheduling in deterministic asynchronous networks. The solution leverages predictive data analytics and reinforcement learning to maximize the network operator’s revenue. We evaluate the performance of LEARNET through simulation in a fifth-generation (5G) asynchronous deterministic backhaul network where incoming flows have characteristics similar to the four critical 5GQoS Identifiers (5QIs) defined in Third Generation Partnership Project (3GPP) TS 23.501 V16.1.0. Also, we compared the performance of LEARNET with a baseline solution that respects the 5QIs priorities for allocating the incoming flows. The obtained results show that, for the scenario considered, LEARNET achieves a gain in the revenue of up to 45% compared to the baseline solution.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen