Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning for GPS spoofing detection in cellular-enabled UAV systems

Dang, Yongchao; Benzaïd, Chafika; Yang, Bin; Taleb, Tarik (2021-12-10)

 
Avaa tiedosto
nbnfi-fe2022031523596.pdf (570.0Kt)
nbnfi-fe2022031523596_meta.xml (34.41Kt)
nbnfi-fe2022031523596_solr.xml (30.20Kt)
Lataukset: 

URL:
https://doi.org/10.1109/NaNA53684.2021.00093

Dang, Yongchao
Benzaïd, Chafika
Yang, Bin
Taleb, Tarik
Institute of Electrical and Electronics Engineers
10.12.2021

Y. Dang, C. Benzaïd, B. Yang and T. Taleb, "Deep Learning for GPS Spoofing Detection in Cellular-Enabled UAV Systems," 2021 International Conference on Networking and Network Applications (NaNA), 2021, pp. 501-506, doi: 10.1109/NaNA53684.2021.00093

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/NaNA53684.2021.00093
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022031523596
Tiivistelmä

Abstract

Cellular-based Unmanned Aerial Vehicle (UAV) systems are a promising paradigm to provide reliable and fast Beyond Visual Line of Sight (BVLoS) communication services for UAV operations. However, such systems are facing a serious GPS spoofing threat for UAV’s position. To enable safe and secure UAV navigation BVLoS, this paper proposes a cellular network assisted UAV position monitoring and anti-GPS spoofing system, where deep learning approach is used to live detect spoofed GPS positions. Specifically, the proposed system introduces a MultiLayer Perceptron (MLP) model which is trained on the statistical properties of path loss measurements collected from nearby base stations to decide the authenticity of the GPS position. Experiment results indicate the accuracy rate of detecting GPS spoofing under our proposed approach is more than 93% with three base stations and it can also reach 80% with only one base station.

Kokoelmat
  • Avoin saatavuus [37688]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen