Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vehicular cooperative perception through action branching and federated reinforcement learning

Abdel-Aziz, Mohamed K.; Perfecto, Cristina; Samarakoon, Sumudu; Bennis, Mehdi; Saad, Walid (2021-11-13)

 
Avaa tiedosto
nbnfi-fe2022012811202.pdf (1.387Mt)
nbnfi-fe2022012811202_meta.xml (39.02Kt)
nbnfi-fe2022012811202_solr.xml (35.41Kt)
Lataukset: 

URL:
https://doi.org/10.1109/TCOMM.2021.3126650

Abdel-Aziz, Mohamed K.
Perfecto, Cristina
Samarakoon, Sumudu
Bennis, Mehdi
Saad, Walid
Institute of Electrical and Electronics Engineers
13.11.2021

M. K. Abdel-Aziz, C. Perfecto, S. Samarakoon, M. Bennis and W. Saad, "Vehicular Cooperative Perception Through Action Branching and Federated Reinforcement Learning," in IEEE Transactions on Communications, vol. 70, no. 2, pp. 891-903, Feb. 2022, doi: 10.1109/TCOMM.2021.3126650

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/TCOMM.2021.3126650
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022012811202
Tiivistelmä

Abstract

Cooperative perception plays a vital role in extending a vehicle’s sensing range beyond its line-of-sight. However, exchanging raw sensory data under limited communication resources is infeasible. Towards enabling an efficient cooperative perception, vehicles need to address the following fundamental question: What sensory data needs to be shared? at which resolution? and with which vehicles? To answer this question, in this paper, a novel framework is proposed to allow reinforcement learning (RL)-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs) by utilizing a quadtree-based point cloud compression mechanism. Furthermore, a federated RL approach is introduced in order to speed up the training process across vehicles. Simulation results show the ability of the RL agents to efficiently learn the vehicles’ association, RB allocation, and message content selection while maximizing vehicles’ satisfaction in terms of the received sensory information. The results also show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.

Kokoelmat
  • Avoin saatavuus [37647]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen