Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

CLIMAT : clinically-inspired multi-agent transformers for knee osteoarthritis trajectory forecasting

Nguyen, Huy Hoang; Saarakkala, Simo; Blaschko, Matthew B.; Tiulpin, Aleksei (2022-04-26)

 
Avaa tiedosto
nbnfi-fe2022101361858.pdf (2.566Mt)
nbnfi-fe2022101361858_meta.xml (37.78Kt)
nbnfi-fe2022101361858_solr.xml (36.28Kt)
Lataukset: 

URL:
https://doi.org/10.1109/isbi52829.2022.9761545

Nguyen, Huy Hoang
Saarakkala, Simo
Blaschko, Matthew B.
Tiulpin, Aleksei
Institute of Electrical and Electronics Engineers
26.04.2022

H. H. Nguyen, S. Saarakkala, M. B. Blaschko and A. Tiulpin, "CLIMAT: Clinically-Inspired Multi-Agent Transformers for Knee Osteoarthritis Trajectory Forecasting," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-5, doi: 10.1109/ISBI52829.2022.9761545.

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/isbi52829.2022.9761545
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022101361858
Tiivistelmä

Abstract

In medical applications, deep learning methods are designed to automate diagnostic tasks. However, a clinically relevant question that practitioners usually face, is how to predict the future trajectory of a disease (prognosis). Current methods for such a problem often require domain knowledge, and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many forecasting problem from multimodal data. Inspired by a clinical decision-making process with two agents — a radiologist and a general practitioner, we model a prognosis prediction problem with two transformer-based components that share information between each other. The first block in this model aims to analyze the imaging data, and the second block leverages the internal representations of the first one as inputs, also fusing them with auxiliary patient data. We show the effectiveness of our method in predicting the development of structural knee osteoarthritis changes over time. Our results show that the proposed method outperforms the state-of-the-art baselines in terms of various performance metrics. In addition, we empirically show that the existence of the multi-agent transformers with depths of 2 is sufficient to achieve good performances. Our code is publicly available at https://github.com/MIPT-Oulu/CLIMAT.

Kokoelmat
  • Avoin saatavuus [37798]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen