Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Charge dynamics in quantum-circuit refrigeration : thermalization and microwave gain

Hsu, Hao; Silveri, Matti; Sevriuk, Vasilii; Möttönen, Mikko; Catelani, Gianluigi (2021-10-08)

 
Avaa tiedosto
nbnfi-fe2021101451094.pdf (3.246Mt)
nbnfi-fe2021101451094_meta.xml (36.94Kt)
nbnfi-fe2021101451094_solr.xml (37.58Kt)
Lataukset: 

URL:
https://doi.org/10.1116/5.0062868

Hsu, Hao
Silveri, Matti
Sevriuk, Vasilii
Möttönen, Mikko
Catelani, Gianluigi
AIP Publishing
08.10.2021

Hsu, H., Silveri, M., Sevriuk, V., Möttönen, M., & Catelani, G. (2021). Charge dynamics in quantum-circuit refrigeration: Thermalization and microwave gain. In AVS Quantum Science Vol. 3, Issue 4, p. 042001. American Vacuum Society. https://doi.org/10.1116/5.0062868

https://rightsstatements.org/vocab/InC/1.0/
© 2021 Author(s). Published under an exclusive license by AIP Publishing.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1116/5.0062868
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2021101451094
Tiivistelmä

Abstract

Previous studies of photon-assisted tunneling through normal-metal–insulator–superconductor junctions have exhibited potential for providing a convenient tool to control the dissipation of quantum-electric circuits in situ. However, the current literature on such a quantum-circuit refrigerator (QCR) does not present a detailed description for the charge dynamics of the tunneling processes or the phase coherence of the open quantum system. Here, we derive a master equation describing both quantum-electric and charge degrees of freedom, and discover that typical experimental parameters of low temperature and yet lower charging energy yield a separation of time scales for the charge and quantum dynamics. Consequently, the minor effect of the different charge states can be taken into account by averaging over the charge distribution. We also consider applying an ac voltage to the tunnel junction, which enables control of the decay rate of a superconducting qubit over four orders of magnitude by changing the drive amplitude; we find an order-of-magnitude drop in the qubit excitation in 40 ns and a residual reset infidelity below 10⁻⁴. Furthermore, for the normal island, we consider the case of charging energy and single-particle level spacing large compared to the superconducting gap, i.e., a quantum dot. Although the decay rates arising from such a dot QCR appear low for use in qubit reset, the device can provide effective negative damping (gain) to the coupled microwave resonator. The Fano factor of such a millikelvin microwave source may be smaller than unity, with the latter value being reached close to the maximum attainable power.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen