Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pervasive machine learning for smart radio environments enabled by reconfigurable intelligent surfaces

Alexandropoulos, George C.; Stylianopoulos, Kyriakos; Huang, Chongwen; Yuen, Chau; Bennis, Mehdi; Debbah, Mérouane (2022-08-23)

 
Avaa tiedosto
nbnfi-fe2022100661261.pdf (4.204Mt)
nbnfi-fe2022100661261_meta.xml (41.12Kt)
nbnfi-fe2022100661261_solr.xml (49.11Kt)
Lataukset: 

URL:
https://doi.org/10.1109/jproc.2022.3174030

Alexandropoulos, George C.
Stylianopoulos, Kyriakos
Huang, Chongwen
Yuen, Chau
Bennis, Mehdi
Debbah, Mérouane
Institute of Electrical and Electronics Engineers
23.08.2022

G. C. Alexandropoulos, K. Stylianopoulos, C. Huang, C. Yuen, M. Bennis and M. Debbah, "Pervasive Machine Learning for Smart Radio Environments Enabled by Reconfigurable Intelligent Surfaces," in Proceedings of the IEEE, vol. 110, no. 9, pp. 1494-1525, Sept. 2022, doi: 10.1109/JPROC.2022.3174030

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/jproc.2022.3174030
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022100661261
Tiivistelmä

Abstract

The emerging technology of reconfigurable intelligent surfaces (RISs) is provisioned as an enabler of smart wireless environments, offering a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium, ultimately providing increased environmental intelligence for diverse operation objectives. One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces with limited, or even the absence of, computing hardware. In this article, we consider multiuser and multi-RIS-empowered wireless systems and present a thorough survey of the online machine learning approaches for the orchestration of their various tunable components. Focusing on the sum-rate maximization as a representative design objective, we present a comprehensive problem formulation based on deep reinforcement learning (DRL). We detail the correspondences among the parameters of the wireless system and the DRL terminology, and devise generic algorithmic steps for the artificial neural network training and deployment while discussing their implementation details. Further practical considerations for multi-RIS-empowered wireless communications in the sixth-generation (6G) era are presented along with some key open research challenges. Different from the DRL-based status quo, we leverage the independence between the configuration of the system design parameters and the future states of the wireless environment, and present efficient multiarmed bandits approaches, whose resulting sum-rate performances are numerically shown to outperform random configurations, while being sufficiently close to the conventional deep \(Q\) network (DQN) algorithm, but with lower implementation complexity.

Kokoelmat
  • Avoin saatavuus [38840]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen