Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Late fusion multiple kernel clustering with proxy graph refinement

Wang, Siwei; Liu, Xinwang; Liu, Li; Zhou, Sihang; Zhu, En (2021-10-14)

 
Avaa tiedosto
nbnfi-fe2022100561189.pdf (3.395Mt)
nbnfi-fe2022100561189_meta.xml (36.78Kt)
nbnfi-fe2022100561189_solr.xml (38.71Kt)
Lataukset: 

URL:
https://doi.org/10.1109/tnnls.2021.3117403

Wang, Siwei
Liu, Xinwang
Liu, Li
Zhou, Sihang
Zhu, En
Institute of Electrical and Electronics Engineers
14.10.2021

S. Wang, X. Liu, L. Liu, S. Zhou and E. Zhu, "Late Fusion Multiple Kernel Clustering With Proxy Graph Refinement," in IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8, pp. 4359-4370, Aug. 2023, doi: 10.1109/TNNLS.2021.3117403.

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/tnnls.2021.3117403
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022100561189
Tiivistelmä

Abstract

Multiple kernel clustering (MKC) optimally utilizes a group of pre-specified base kernels to improve clustering performance. Among existing MKC algorithms, the recently proposed late fusion MKC methods demonstrate promising clustering performance in various applications and enjoy considerable computational acceleration. However, we observe that the kernel partition learning and late fusion processes are separated from each other in the existing mechanism, which may lead to suboptimal solutions and adversely affect the clustering performance. In this article, we propose a novel late fusion multiple kernel clustering with proxy graph refinement (LFMKC-PGR) framework to address these issues. First, we theoretically revisit the connection between late fusion kernel base partition and traditional spectral embedding. Based on this observation, we construct a proxy self-expressive graph from kernel base partitions. The proxy graph in return refines the individual kernel partitions and also captures partition relations in graph structure rather than simple linear transformation. We also provide theoretical connections and considerations between the proposed framework and the multiple kernel subspace clustering. An alternate algorithm with proved convergence is then developed to solve the resultant optimization problem. After that, extensive experiments are conducted on 12 multi-kernel benchmark datasets, and the results demonstrate the effectiveness of our proposed algorithm. The code of the proposed algorithm is publicly available at https://github.com/wangsiwei2010/graphlatefusion_MKC.

Kokoelmat
  • Avoin saatavuus [38821]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen