Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamic task allocation and service migration in edge-cloud IoT system based on deep reinforcement learning

Chen, Yan; Sun, Yanjing; Wang, Chenyang; Taleb, Tarik (2022-04-04)

 
Avaa tiedosto
nbnfi-fe2022083056749.pdf (4.155Mt)
nbnfi-fe2022083056749_meta.xml (34.33Kt)
nbnfi-fe2022083056749_solr.xml (39.29Kt)
Lataukset: 

URL:
https://doi.org/10.1109/jiot.2022.3164441

Chen, Yan
Sun, Yanjing
Wang, Chenyang
Taleb, Tarik
Institute of Electrical and Electronics Engineers
04.04.2022

Y. Chen, Y. Sun, C. Wang and T. Taleb, "Dynamic Task Allocation and Service Migration in Edge-Cloud IoT System Based on Deep Reinforcement Learning," in IEEE Internet of Things Journal, vol. 9, no. 18, pp. 16742-16757, 15 Sept.15, 2022, doi: 10.1109/JIOT.2022.3164441

https://rightsstatements.org/vocab/InC/1.0/
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/jiot.2022.3164441
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022083056749
Tiivistelmä

Abstract

Edge computing extends the ability of cloud computing to the network edge to support diverse resource-sensitive and performance-sensitive IoT applications. However, due to the limited capacity of edge servers (ESs) and the dynamic computing requirements, the system needs to dynamically update the task allocation policy according to real-time system states. Service migration is essential to ensure service continuity when implementing dynamic task allocation. Therefore, this paper investigates the long-term dynamic task allocation and service migration (DTASM) problem in edge-cloud IoT systems where users’ computing requirements and mobility change over time. The DTASM problem is formulated to achieve the long-term performance of minimizing the load forwarded to the cloud while fulfilling the seamless migration constraint and the latency constraint at each time of implementing the DTASM decision. First, the DTASM problem is divided into two sub-problems: the user selection problem on each ES and the system task allocation problem. Then, the DTASM problem is formulated as a Markov Decision Process (MDP) and an approach based on deep reinforcement learning (DRL) is proposed. To tackle the challenge of vast discrete action spaces for DTASM task allocation in the system with a mass of IoT users, a training architecture based on the twin-delayed deep deterministic policy gradient (DDPG) is employed. Meanwhile, each action is divided into a differentiable action for policy training and one mapped action for implementation in the IoT system. Simulation results demonstrate that the proposed DRL-based approach obtains the long-term optimal system performance compared to other benchmarks while satisfying seamless service migration.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen