Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generation of anatomically inspired human airway tree using electrical impedance tomography : a method to estimate regional lung filling characteristics

Zamani, Majid; Kallio, Merja; Bayford, Richard; Demosthenous, Andreas (2021-12-16)

 
Avaa tiedosto
nbnfi-fe2022082556196.pdf (7.746Mt)
nbnfi-fe2022082556196_meta.xml (36.26Kt)
nbnfi-fe2022082556196_solr.xml (40.07Kt)
Lataukset: 

URL:
https://doi.org/10.1109/tmi.2021.3136434

Zamani, Majid
Kallio, Merja
Bayford, Richard
Demosthenous, Andreas
Institute of Electrical and Electronics Engineers
16.12.2021

M. Zamani, M. Kallio, R. Bayford and A. Demosthenous, "Generation of Anatomically Inspired Human Airway Tree Using Electrical Impedance Tomography: A Method to Estimate Regional Lung Filling Characteristics," in IEEE Transactions on Medical Imaging, vol. 41, no. 5, pp. 1125-1137, May 2022, doi: 10.1109/TMI.2021.3136434

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/tmi.2021.3136434
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022082556196
Tiivistelmä

Abstract

The purpose of lung recruitment is to improve and optimize the air exchange flow in the lungs by adjusting the respiratory settings during mechanical ventilation. Electrical impedance tomography (EIT) is a monitoring tool that permits measurement of regional pulmonary filling characteristics or filling index (FI) during ventilation. The conventional EIT system has limitations which compromise the accuracy of the FI. This paper proposes a novel and automated methodology for accurate FI estimation based on EIT images of recruitable regional collapse and hyperdistension during incremental positive end-expiratory pressure. It identifies details of the airway tree (AT) to generate a correction factor to the FIs providing an accurate measurement. Multi-scale image enhancement followed by identification of the AT skeleton with a robust and self-exploratory tracing algorithm is used to automatically estimate the FI. AT tracing was validated using phantom data on a ground-truth lung. Based on generated phantom EIT images, including an established reference, the proposed method results in more accurate FI estimation of 65% in all quadrants compared with the current state-of-the-art. Measured regional filling characteristics were also examined by comparing regional and global impedance variations in clinically recorded data from ten different subjects. Clinical tests on filling characteristics based on extraction of the AT from the resolution enhanced EIT images indicated a more accurate result compared with the standard EIT images.

Kokoelmat
  • Avoin saatavuus [38824]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen