Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust GAN-generated face detection method based on dual-color spaces and an improved Xception

Chen, Beijing; Liu, Xin; Zheng, Yuhui; Zhao, Guoying; Shi, Yun-Qing (2021-09-29)

 
Avaa tiedosto
nbnfi-fe2022090257046.pdf (1.378Mt)
nbnfi-fe2022090257046_meta.xml (37.90Kt)
nbnfi-fe2022090257046_solr.xml (43.67Kt)
Lataukset: 

URL:
https://doi.org/10.1109/tcsvt.2021.3116679

Chen, Beijing
Liu, Xin
Zheng, Yuhui
Zhao, Guoying
Shi, Yun-Qing
Institute of Electrical and Electronics Engineers
29.09.2021

B. Chen, X. Liu, Y. Zheng, G. Zhao and Y. -Q. Shi, "A Robust GAN-Generated Face Detection Method Based on Dual-Color Spaces and an Improved Xception," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 6, pp. 3527-3538, June 2022, doi: 10.1109/TCSVT.2021.3116679

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/tcsvt.2021.3116679
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022090257046
Tiivistelmä

Abstract

In recent years, generative adversarial networks (GANs) have been widely used to generate realistic fake face images, which can easily deceive human beings. To detect these images, some methods have been proposed. However, their detection performance will be degraded greatly when the testing samples are post-processed. In this paper, some experimental studies on detecting post-processed GAN-generated face images find that (a) both the luminance component and chrominance components play an important role, and (b) the RGB and YCbCr color spaces achieve better performance than the HSV and Lab color spaces. Therefore, to enhance the robustness, both the luminance component and chrominance components of dual-color spaces (RGB and YCbCr) are considered to utilize color information effectively. In addition, the convolutional block attention module and multilayer feature aggregation module are introduced into the Xception model to enhance its feature representation power and aggregate multilayer features, respectively. Finally, a robust dual-stream network is designed by integrating dual-color spaces RGB and YCbCr and using an improved Xception model. Experimental results demonstrate that our method outperforms some existing methods, especially in its robustness against different types of post-processing operations, such as JPEG compression, Gaussian blurring, gamma correction, and median filtering.

Kokoelmat
  • Avoin saatavuus [38549]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen