Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Information freshness-aware task offloading in air-ground integrated edge computing systems

Chen, Xianfu; Wu, Celimuge; Chen, Tao; Liu, Zhi; Zhang, Honggang; Bennis, Mehdi; Liu, Hang; Ji, Yusheng (2021-11-08)

 
Avaa tiedosto
nbnfi-fe2022083056761.pdf (1.000Mt)
nbnfi-fe2022083056761_meta.xml (45.54Kt)
nbnfi-fe2022083056761_solr.xml (41.82Kt)
Lataukset: 

URL:
https://doi.org/10.1109/jsac.2021.3126075

Chen, Xianfu
Wu, Celimuge
Chen, Tao
Liu, Zhi
Zhang, Honggang
Bennis, Mehdi
Liu, Hang
Ji, Yusheng
Institute of Electrical and Electronics Engineers
08.11.2021

X. Chen et al., "Information Freshness-Aware Task Offloading in Air-Ground Integrated Edge Computing Systems," in IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 243-258, Jan. 2022, doi: 10.1109/JSAC.2021.3126075

https://rightsstatements.org/vocab/InC/1.0/
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1109/jsac.2021.3126075
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe2022083056761
Tiivistelmä

Abstract

This paper investigates an air-ground integrated multi-access edge computing system, which is deployed by an infrastructure provider (InP). Under a business agreement with the InP, a third-party service provider provides computing services to the subscribed mobile users (MUs). MUs compete for the shared spectrum and computing resources over time to achieve their distinctive goals. From the perspective of an MU, we deliberately define the age of update to capture the staleness of information from refreshing computation outcomes. Given the system dynamics, we model the interactions among MUs as a stochastic game. In the Nash equilibrium without cooperation, each MU behaves in accordance with the local system states and conjectures. We can hence transform the stochastic game into a single-agent Markov decision process. As another major contribution, we develop an online deep reinforcement learning (RL) scheme that adopts two separate double deep Q-networks to approximate the Q-factor and the post-decision Q-factor, respectively. The deep RL scheme allows each MU to optimize the behaviours with unknown dynamic statistics. Numerical experiments show that our proposed scheme outperforms the baselines in terms of the average utility under various system conditions.

Kokoelmat
  • Avoin saatavuus [37685]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen