Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning graph convolutional network for skeleton-based human action recognition by neural searching

Peng, Wei; Hong, Xiaopeng; Chen, Haoyu; Zhao, Guoying (2020-03-04)

 
Avaa tiedosto
nbnfi-fe202104099803.pdf (720.1Kt)
nbnfi-fe202104099803_meta.xml (37.06Kt)
nbnfi-fe202104099803_solr.xml (32.87Kt)
Lataukset: 

URL:
https://doi.org/10.1609/aaai.v34i03.5652

Peng, Wei
Hong, Xiaopeng
Chen, Haoyu
Zhao, Guoying
Association for the Advancement of Artificial Intelligence
04.03.2020

Peng, W., Hong, X., Chen, H., & Zhao, G. (2020). Learning Graph Convolutional Network for Skeleton-Based Human Action Recognition by Neural Searching. Proceedings of the AAAI Conference on Artificial Intelligence, 34(03), 2669-2676. https://doi.org/10.1609/aaai.v34i03.5652

https://rightsstatements.org/vocab/InC/1.0/
© 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1609/aaai.v34i03.5652
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202104099803
Tiivistelmä

Abstract

Human action recognition from skeleton data, fuelled by the Graph Convolutional Network (GCN) with its powerful capability of modeling non-Euclidean data, has attracted lots of attention. However, many existing GCNs provide a pre-defined graph structure and share it through the entire network, which can loss implicit joint correlations especially for the higher-level features. Besides, the mainstream spectral GCN is approximated by one-order hop such that higher-order connections are not well involved. All of these require huge efforts to design a better GCN architecture. To address these problems, we turn to Neural Architecture Search (NAS) and propose the first automatically designed GCN for this task. Specifically, we explore the spatial-temporal correlations between nodes and build a search space with multiple dynamic graph modules. Besides, we introduce multiple-hop modules and expect to break the limitation of representational capacity caused by one-order approximation. Moreover, a corresponding sampling- and memory-efficient evolution strategy is proposed to search in this space. The resulted architecture proves the effectiveness of the higher-order approximation and the layer-wise dynamic graph modules. To evaluate the performance of the searched model, we conduct extensive experiments on two very large scale skeleton-based action recognition datasets. The results show that our model gets the state-of-the-art results in term of given metrics.

Kokoelmat
  • Avoin saatavuus [37635]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen