Hyppää sisältöön
    • FI
    • ENG
  • FI
  • /
  • EN
OuluREPO – Oulun yliopiston julkaisuarkisto / University of Oulu repository
Näytä viite 
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
  •   OuluREPO etusivu
  • Oulun yliopisto
  • Avoin saatavuus
  • Näytä viite
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mix dimension in Poincaré geometry for 3D skeleton-based action recognition

Peng, Wei; Shi, Jingang; Xia, Zhaoqiang; Zhao, Guoying (2020-10-31)

 
Avaa tiedosto
nbnfi-fe202102175104.pdf (548.7Kt)
nbnfi-fe202102175104_meta.xml (34.53Kt)
nbnfi-fe202102175104_solr.xml (32.88Kt)
Lataukset: 

URL:
https://doi.org/10.1145/3394171.3413910

Peng, Wei
Shi, Jingang
Xia, Zhaoqiang
Zhao, Guoying
Association for Computing Machinery
31.10.2020

Wei Peng, Jingang Shi, Zhaoqiang Xia, and Guoying Zhao. 2020. Mix Dimension in Poincaré Geometry for 3D Skeleton-based Action Recognition. Proceedings of the 28th ACM International Conference on Multimedia. Association for Computing Machinery, New York, NY, USA, 1432–1440. DOI:https://doi.org/10.1145/3394171.3413910

https://rightsstatements.org/vocab/InC/1.0/
© 2020 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in MM '20: Proceedings of the 28th ACM International Conference on Multimedia, https://doi.org/10.1145/3394171.3413910.
https://rightsstatements.org/vocab/InC/1.0/
doi:https://doi.org/10.1145/3394171.3413910
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on
https://urn.fi/URN:NBN:fi-fe202102175104
Tiivistelmä

Abstract

Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data, e.g., skeletal data in human action recognition, providing an exciting new way to fuse rich structural information for nodes residing in different parts of a graph. In human action recognition, current works introduce a dynamic graph generation mechanism to better capture the underlying semantic skeleton connections and thus improves the performance. In this paper, we provide an orthogonal way to explore the underlying connections. Instead of introducing an expensive dynamic graph generation paradigm, we build a more efficient GCN on a Riemann manifold, which we think is a more suitable space to model the graph data, to make the extracted representations fit the embedding matrix. Specifically, we present a novel spatial-temporal GCN (ST-GCN) architecture which is defined via the Poincaré geometry such that it is able to better model the latent anatomy of the structure data. To further explore the optimal projection dimension in the Riemann space, we mix different dimensions on the manifold and provide an efficient way to explore the dimension for each ST-GCN layer. With the final resulted architecture, we evaluate our method on two current largest scale 3D datasets, i.e., NTU RGB+D and NTU RGB+D 120. The comparison results show that the model could achieve a superior performance under any given evaluation metrics with only 40% model size when compared with the previous best GCN method, which proves the effectiveness of our model.

Kokoelmat
  • Avoin saatavuus [38618]
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen
 

Selaa kokoelmaa

NimekkeetTekijätJulkaisuajatAsiasanatUusimmatSivukartta

Omat tiedot

Kirjaudu sisäänRekisteröidy
oulurepo@oulu.fiOulun yliopiston kirjastoOuluCRISLaturiMuuntaja
SaavutettavuusselosteTietosuojailmoitusYlläpidon kirjautuminen