Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction : combining knee joint computational modelling with follow-up T₁ρ and T₂ imaging
Bolcos, Paul O.; Mononen, Mika E.; Tanaka, Matthew S.; Yang, Mingrui; Suomalainen, Juha-Sampo; Nissi, Mikko J.; Töyräs, Juha; Ma, Benjamin; Li, Xiaojuan; Korhonen, Rami K. (2019-08-09)
Paul O. Bolcos, Mika E. Mononen, Matthew S. Tanaka, Mingrui Yang, Juha-Sampo Suomalainen, Mikko J. Nissi, Juha Töyräs, Benjamin Ma, Xiaojuan Li, Rami K. Korhonen, Identification of locations susceptible to osteoarthritis in patients with anterior cruciate ligament reconstruction: Combining knee joint computational modelling with follow-up T1ρ and T2 imaging, Clinical Biomechanics, Volume 79, 2020, 104844, ISSN 0268-0033, https://doi.org/10.1016/j.clinbiomech.2019.08.004
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://urn.fi/URN:NBN:fi-fe202101212317
Tiivistelmä
Abstract
Background: Finite element modelling can be used to evaluate altered loading conditions and failure locations in knee joint tissues. One limitation of this modelling approach has been experimental comparison. The aims of this proof-of-concept study were: 1) identify areas susceptible to osteoarthritis progression in anterior cruciate ligament reconstructed patients using finite element modelling; 2) compare the identified areas against changes in T₂ and T₁ₚ values between 1-year and 3-year follow-up timepoints.
Methods: Two patient-specific finite element models of knee joints with anterior cruciate ligament reconstruction were created. The knee geometry was based on clinical magnetic resonance imaging and joint loading was obtained via motion capture. We evaluated biomechanical parameters linked with cartilage degeneration and compared the identified risk areas against T₂ and T₁ₚ maps.
Findings: The risk areas identified by the finite element models matched the follow-up magnetic resonance imaging findings. For Patient 1, excessive values of maximum principal stresses and shear strains were observed in the posterior side of the lateral tibial and femoral cartilage. For Patient 2, high values of maximum principal stresses and shear strains of cartilage were observed in the posterior side of the medial joint compartment. For both patients, increased T₂ and T₁ₚ values between the follow-up times were observed in the same areas.
Interpretation: Finite element models with patient-specific geometries and motions and relatively simple material models of tissues were able to identify areas susceptible to post-traumatic knee osteoarthritis. We suggest that the methodology presented here may be applied in large cohort studies.
Kokoelmat
- Avoin saatavuus [34589]